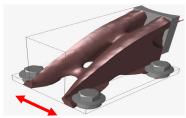
TAMK FieldLab as one SIE/SIX Pilot Line

SIE Final Seminar 8.12.2022

TAMK team: Markus Aho, Mika Ijas, Katri Salminen, Jere Siivonen, Kari Naakka & Hanna Ylli
Tampere University of Applied Sciences



TAMK's Design & Manufacturing in Industry -RDI team connected to FieldLab Pilot line

Key sector competences

- Structural design and optimization
- Design for AM
- Additive manufacturing: 3D printing & welding with industrial robots
- Industry 4.0 technologies
- Sustainable manufacturing
- Value chain in Industry

Example project: Kataja, Business Finland: Kataja -project concentrated to develop and manufacture a 3D printed large-scale construction using cellulose plastic bio composite material with a robot. As the result of this project, a large-scale 3D printer system, integrating industrial robot and self-made heating able 3D printing head for the bio composite material, was developed and validated to TRL 4 in TAMK RDI environment, Fieldlab. Kataja- Footbridge, 3D robot printed from bio composite, was validated by FEM simulation and physical tests to TRL 6 and released in Pori accommodation exhibition with honor. (https://www.upm.com/news-andstories/articles/2018/04/a-3d-printed-bridge-naturally-with-upm-formi/)

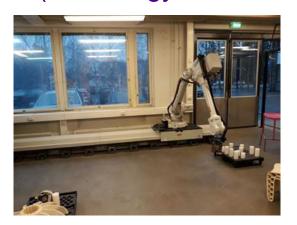
Rakennusinsinööriliitto 2019 vuoden silta:

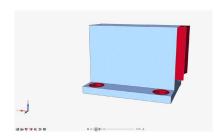
Kunniamaininta 3D-tulostetulle Lehtisillalle

FieldLab one Pilot line in SIE – Testbed and Capability Creation for Industry 4.0

TAMK's <u>FieldLab</u> acts for the impact of learning and R&D&I activities in Industry 4.0 and provides:

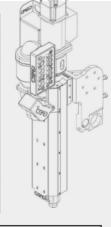
- Learning environment and living lab for skills and capabilities in Industry 4.0: Experimentations to learn cross sectional skills, such as factory level connectivity, digital trust and data-based intelligence, integrated together with the manufacturing specific hard engineering skills, such as robotics, automation, AM and machine tools. FieldLab is a member of ENOLL.
- ➤ Demonstrator for Smart Industry: Industrial demos and technology flashes to increase SMEs' mindset towards competitive investments in manufacturing.
- ➤ Industrial RDI -pilot and test environment: Pilots and tests related to development and new innovations to address market needs for smart digital manufacturing solutions.
- ➤ Platform for multi-disciplinary applied research: FieldLab is now ramping up co-operation (Connected Factories) with TAU's HRC Pilot Line and Fastems' manufacturing training center, hopefully in near future also with other SIE/SIX Pilot lines, all together accelerating the use of digital emerging technologies in manufacturing.



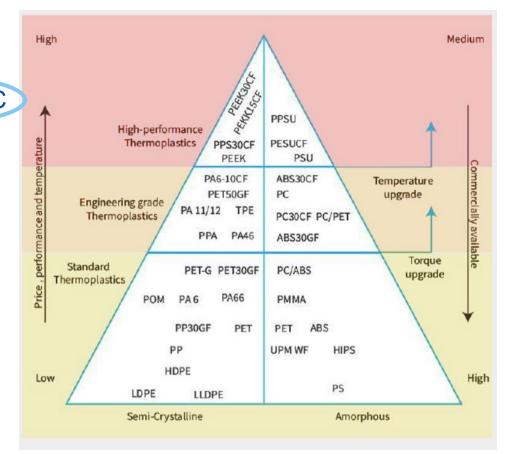

TAMK FieldLab's specific Pilot line on 3D printing of large bio composite structure with an industrial robot

- Digital design and manufacturing of "free of shape" products
- Optimized designs for 3D printing
- Ability to 3D -print large (5x2x2m) optimized structures with an industrial robot, which is connected to an IoT server according to Industry 4.0.
- The extruder print head enables efficient 3D printing using plastics or bio composite material in granulate form
- Many national projects and now partner in some resent EU Horizon Calls in AM production method development, operation mainly from TRL 4 to TRL 6 (technology validated in lab -> technology demonstrated in relevant environment)

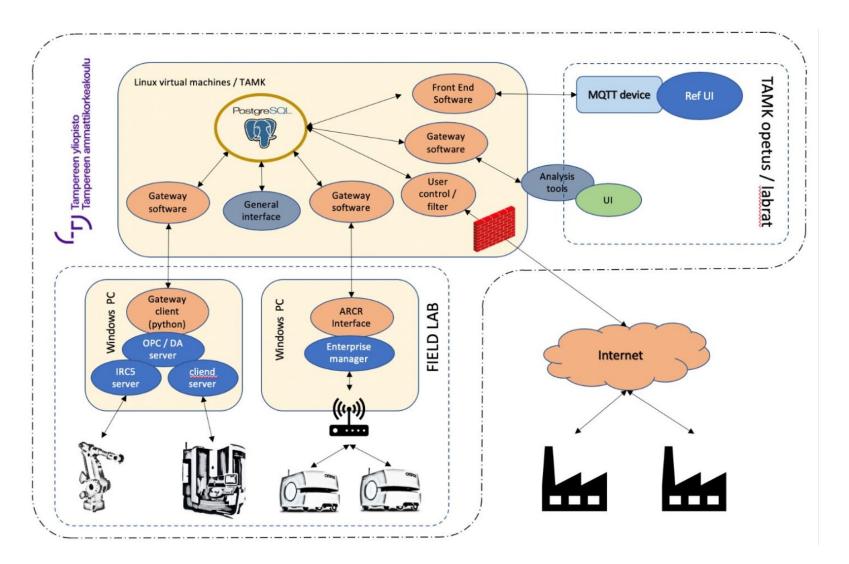
TAMK Fieldlab's Pilot line on 3D printing of large bio composite structure with an industrial robot


Pellet printing head extruder and material possibilities (by CEAD)

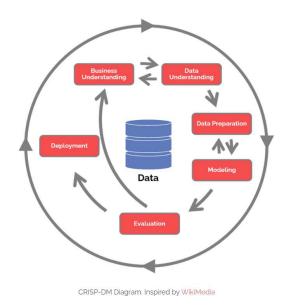
Temperature 400°C


Weight extruder head	< 29kg
Total height	980mm
With	230mm
Depth	340mm
Screw diameter	25mm
Compression ratio	1:3
Mounting on robot	Aluminium bracket, according to your design
Height nozzle to mounting bracket	435mm

Temperature	310°C standard, 400°C optional
Heat zones	4
Cooling zone	1, (resin inlet)
Heat control	Siemens pid controlled
Material inlet Cooling	Water cooled
Control system	Siemens s7-1200
Human machine interface	Siemens ktp 700
Software	CEAD custom software
•	


Drive system	Siemens servo motor
Electric heating power	2,45kw
Rpm control	Internal hmi user input and external 0-10v or external 4-20ma (other options on request)

Power	3 Phase 400v 50-60hz
Connector type:	3P+N+PE CEE 16A plug
Incoming air pressure:	6-10 Bar (87-145 Psi)



FieldLab Industry 4.0 interfaces (Sensor layer, Connectivity layer, Database layer, UI layer)

How to collect and exploit data in SMEs' different manufacturing systems?

Thank you! Questions/Comments?

