
Design document: Handling exceptions and interrupts

This document describes what happens on pipeline in case of an exception or interrupt or
a combination of these.

Definitions

an interrupt

An external/internal device requests CPU time. This is the normal way to interrupt
the processor in a multitasking system. Interrupt request can originate for example
from a timer or an external IO –device, coprocessor etc.

An exception
An instruction causes a violation. An exception is considered to be abnormal
condition. Software originated exceptions can be synthesized using trap –
instruction.

General philosophy (crap?)

From the hardware point of view, exceptions require immediate attention and actions
cannot be delayed even one clock cycle. This is because hardware has to make sure that
the instruction causing the exception does not modify the state of the processor: flags,
register or memory contents. If it does, it will most probably cause following instructions
to fail also.

From software point of view, the processing of an exception in one thread can be delayed
if some other thread currently needs CPU time. It is enough to halt the thread where the
exception occurred and invoke a handler routine whenever the execution of the violating
thread should continue. Information about exception is passed to the handler.

From software point of view, interrupts should be serviced immediately. Especially
systems which have strict real time requirements do not allow servicing to be delayed too
much. Anyway ‘immediately’ has a slightly different meaning for software than for
hardware: Typically switching to an interrupt routine means executing many instructions
before the actual processing of the interrupt event (anything up to hundreds of
instructions). In hardware, switching takes typically less than five clock cycles!

From hardware point of view, interrupts are not an error condition and as such do not
require immediate attention if something with higher priority is processed. In all cases
COFFEE core will pass control to an interrupt service routine as soon as possible. In
practise the interrupt response time will be predictable. In fact response will be delayed
only in these cases: cache miss causes stall cycles, interrupts are disabled by software, an
interrupt with a higher priority is in service or an exception occurs simultaneously with
detecting an interrupt request or during a context switch.

Processing of interrupts

Signalling an interrupt

The latency from asserting an external interrupt signal to the moment when control of the
core detects the signal is multiple cycles. The latency also depends on the mode of
operation of the interrupt interface. Latency is calculated from the falling edge of the
EXT_INTERRUPT –signal. Latency from signalling to context switch in different cases
is shown in the table below. After edge detection stage, the request is saved in PEND
register for further processing. If interrupts are disabled, a request will be pending until
interrupts are again enabled. As soon as the core acknowledges the pending request it will
be visible in the SERV –register after which a new request from the same source can be
accepted.

Table 1, Interrupt signalling latency
mode signal

synchronization
edge detection priority check

and masking
total cycles

asynchronous
(EXT_HANDLER
low)

2 clock cycles 1 clock cycle 4

synchronous
(EXT_HANDLER
high)

-

1 clock cycle or less
depending on timing
of the
EXT_INTERRUPT
–signal.

1 clock cycle 2

Deciding return address

Table 2, deciding the return address

case explanation return address/source notes
0 One of the following

instructions in stage 1:
bc, bnc, begt, belt, beq, bgt,
blt, bne, jal, jalr, jmp, jmpr,
retu or scall.

Calculated jump target address if the branch is
taken or the address of the instruction
following branch slot instruction if branch is
not taken.

All of the listed
instructions cause
execution to branch
somewhere. Slot
instruction is executed.

1 swm -instruction in stage 1 or
2

Address of the instruction following the two
required nop –instructions.

There has to be two nop
instructions after a swm.

2 mulu, muli, muls or mulus in
stage 1

Address instruction itself. One of these and a
following mulhi –
instruction is atomic. =>
Cannot be executed
separately.

3 reti –instruction in stage 1, 2
or 3

Address on top of the hardware stack. In practise this means that,
an interrupt service routine
is interrupted by a higher
priority request (nested
interrupts)

4 All other cases Address of the instruction being fetched, that
is the current PC value.

notes:

1. The return address will be written to PC before saving it to hardware stack, which
means that it will be visible to the instruction cache even though the instruction

pointed to is not executed. The only exception to this is case 3 in the above table:
If the needed return address is already on top of the stack, it is not popped to PC.

2. If an exception happens during context switching, it takes priority and the

interrupt request is left pending.

Switching to an interrupt routine

Switching to an interrupt service routine takes multiple clock cycles. The number of
clock cycles depends on the contents of the pipeline and possible stalls caused by cache
memory misses or data dependencies.

The total amount of cycles from the falling edge of the EXT_INTERRUPT/COP_EXC –
signal to the moment when the address of the first instruction of an interrupt service
routine is on the I_ADDR –bus is from 3 to n cycles. N depends on pipeline stalls and
contents and the interrupt status of the processor.

Before switching to an interrupt service routine, instructions already on pipeline are
executed to ‘safe’ state. See Table 8, Instructions and their safe states in document
‘Instruction execution cycle times’.

Figure below illustrates context switching logic for both exceptions and interrupts.

prepare to:
-- save the address of the violating instruction
-- save the status flags of the violating istruction
-- flush pipeline up to the violating instruction
-- write address of the handler routine to PC
disable fetch stage(insert nops)

disable fetch
(insert nops)
freeze PC

- disable fetch
 (insert nops)
- source PC from
 PC_PSR_BUFF
 address 1
- flush stage 1

execute one cycle

exception ?

T

prepare to:
-- push return address to HW
stack-- push status flags(+CR0) to HW
stack-- Update PC with interrupt vector
-- drive int_ack high

Architecture Declarations
Concurrent Statements

Process Declarations
Sensitivity List

Start

Normal execution

exception ?
T

F

T

execute one cycle

exception ?
T

F
F

exception ? T

F

execute one cycle

pipeline in safe
state?

interrupt
request ?

T

F

bc, begt, belt, beq, bgt, blt,
bne, jal, jalr, jmp, jmpr,
retu or scall in stage 1

F

swm or reti in
stage 1 or 2

T

F

d10

mulu, muls, mulus
or muli in stage 1

T

exception ?

T

F

safe to switch ?
T

F

execute one cycle

execute one cycle

exception ?

T

F

disable fetch
(insert nops)
freeze PC

execute one cycle

F

F

prepare to:
-- update PSR with exception flags
enable fetch stage

T

Figure 1, Interrupt & exception logic

Returning from an interrupt service routine

Safe return is guaranteed by executing reti –instruction in stage 2 instead of stage 1.
When reti is in stage 2, it can be seen if preceding instructions will cause exceptions. If
not, context can be safely restored. Return address will be on memory bus when reti is in
stage 4 of the pipeline.

Processing of exceptions

Table 3, Exception types and codes.

pri code name description
10 00000000 instruction

address violation
3

While in user mode, instruction is fetched from memory address not
allowed for user.

6 00000001 unknown opcode Version 1.0 of COFFEE RISC does not have any unused opcodes which
makes this obsolete.

7 00000010 Illegal
instruction

While in 16 bit mode, trying to execute an instruction which is valid only in
32 bit mode or trying to execute a superuser only instruction in user mode.

3 00000011 miss aligned
jump address 4

Calculated jump target is not aligned to word(32 bit mode) or halfword(16
bit mode) boundary.

2 00000100 jump address
overflow

A PC relative jump below the bottom of the memory or above the top of the
memory.

9 00000101 miss aligned
instruction
address
1

Instruction address is not aligned according to mode. This can be caused
by:

- External boot address was not aligned to word boundary
- An interrupt vector is not properly aligned or interrupt mode is not

correctly set
- Exception handler entry address is not aligned to word boundary

(this will lock the core by causing an eternal loop!)
- System entry address is not aligned to word boundary

8 111xxxxx trap 2 processor encountered a trap instruction
5 00000110 arithmetic

overflow
The result of a signed arithmetic operation exceeds 231-1 or falls below -231.

0 00000111 data address
violation

While in user mode, a data address refers to memory address not allowed
for user.

1 00001000 data address
overflow

Trying to index data below of the bottom or above of the top of the memory

4 00001001 Illegal jump Trying to jump to protected instruction memory area while in user -mode.
x 00001010

...
00011111

 Reserved for future extensions

Table 4, Exception signalling stages

name violating instruction in stage
unknown opcode 2
Illegal instruction 2
miss aligned jump address
jump address overflow
Illegal jump

3

instruction address violation

miss aligned instruction address
1

trap 2
arithmetic overflow 3
data address violation 4
data address overflow 4

Priorities

Priority 0 means most urgent and 10 means the lowest priority. Priorities come directly
from the order of execution. When two or more instructions cause exception in different
parts of the pipeline, the one with the highest priority is taken into account.

Switching to exception handler routine

The offending instruction and all following instructions in the pipeline (instructions
which follow the violating one in the order of execution) are flushed. The address of the
violating instruction is saved along with status flags (PSR), which were valid when
decoding the instruction. Also a cause code is saved. See CCB registers. The remaining
instructions on the pipeline (instructions which precede the violating one in order of
execution) are executed until the pipeline is in safe state, which means that no more
exceptions can take place(and processor state does not change). New instructions are not
fetched during this pipeline clean operation. If during pipeline clean another exception
occurs, the pipeline is flushed up to that instruction and exception data corresponding to
the violating instruction is saved (in EXCEPTION_CS, EXCEPTION_PC and
EXCEPTION_PSR). After this the cleaning of pipeline will continue until it’s safe to
switch to the exception handler routine.

When the pipeline is clean, PSR will be updated with default handler flags shown below
and execution from address defined in CCB register EXCEP_ADDR is started.

RESERVED IE IL RSWR RSRD UM
xxx 0 1 1 1 0

This kind of operation guarantees that an exception is always catched and instructions
which preceded the violating one are executed properly. Instructions which follow the
violating one are not executed.

Offending instructions are not able to modify the state of the processor or contents of the
memory or registers. Note that Exception data registers inside CCB (EXCEPTION_CS,
EXCEPTION_PC and EXCEPTION_PSR) will be overwritten immediately. If an
exception happens in an exception handler routine (little hope for the software to
recover!) the handler routine is restarted and the link to the original context might be lost
depending on the handler routine.

Figure 1 (previous chapter) illustrates the exception logic.

	Design document: Handling exceptions and interrupts
	Definitions

	An exception
	
	An instruction causes a violation. An exception is considered to be abnormal condition. Software originated exceptions can be synthesized using trap –instruction.

	General philosophy (crap?)
	Processing of interrupts

	The latency from asserting an external interrupt signal to the moment when control of the core detects the signal is multiple cycles. The latency also depends on the mode of operation of the interrupt interface. Latency is calculated from the falling edg
	
	
	
	
	
	
	
	Table 1, Interrupt signalling latency

	Table 2, deciding the return address
	Calculated jump target address if the branch is taken or the address of the instruction following branch slot instruction if branch is not taken.
	Switching to an interrupt routine

	Figure 1, Interrupt & exception logic
	Returning from an interrupt service routine
	Processing of exceptions
	Priorities
	Switching to exception handler routine

