
 1

Exceptions

Definitions:
In this document an exception means an event which will halt the processing of the
current thread immediately and causes the core to switch to an exception handling
routine. An exception is considered an error condition and has to be dealt with
immediately. Note that very often in literature exception means interrupting the
processor in general. See also interrupts.

 2

Table xx, Exception types and codes.

pri code name description
10 00000000 instruction

address violation
3

While in user mode, instruction is fetched from memory address not
allowed for user.

6 00000001 unknown opcode Version 1.0 of COFFEE RISC does not have any unused opcodes which
makes this obsolete.

7 00000010 Illegal
instruction

While in 16 bit mode, trying to execute an instruction which is valid only in
32 bit mode or trying to execute a superuser only instruction in user mode.

3 00000011 miss aligned
jump address 4

Calculated jump target is not aligned to word(32 bit mode) or halfword(16
bit mode) boundary.

2 00000100 jump address
overflow

A PC relative jump below the bottom of the memory or above the top of the
memory.

9 00000101 miss aligned
instruction
address
1

Instruction address is not aligned according to mode. This can be caused
by:

- External boot address was not aligned to word boundary
- An interrupt vector is not properly aligned or interrupt mode is not

correctly set
- Exception handler entry address is not aligned to word boundary

(this will lock the core by causing an eternal loop!)
- System entry address is not aligned to word boundary

8 111xxxxx trap 2 processor encountered a trap instruction
5 00000110 arithmetic

overflow
The result of a signed arithmetic operation exceeds 231-1 or falls below -231.

0 00000111 data address
violation

While in user mode, a data address refers to memory address not allowed
for user.

1 00001000 data address
overflow

Trying to index data below of the bottom or above of the top of the memory

4 00001001 Illegal jump Trying to jump to protected instruction memory area while in user -mode.
x 00001010

...
00011111

 Reserved for future extensions

Notes:

1 In this case, the address is saved, since it cannot be known which instruction(if any) caused the exception.
2 For software exceptions (such as division by zero, or array bounds exceeded)

Exception address will point to trap –instruction. Note, that you cannot generate hardware
exceptions using trap instruction because trap code will be padded with ones.

3 If sequential execution traverses the boundary of the protected instruction memory area, the address of the
instruction pointed to is saved.

4 A jump between memory areas using different encoding will result in unpredictable behaviour.

 3

Handling an exception

In case of an exception, core performs following tasks:

- Saves the address of the instruction causing the exception (or just an address, see
table on previous page) to CCB register EXCEPTION_PC.

- Saves to CCB register EXCEPTION_PSR processor status flags which were used
when the violating instruction was decoded .

- Saves the exception code (see table above) to CCB register EXCEPTION_CS.
- Disables interrupts.
- Switches to 32 bit decoding mode and superuser mode with register set 2 as

default for reading and writing.
- Starts execution from a handler routine pointed by the CCB register

EXCEP_ADDR.

Following things are guaranteed by hardware:

- The violating instruction is not able to modify the state of the processor (registers,
status flags, data memory).

- All instructions before the violating one (in the order of execution) are executed.
- None of the instruction following the violating one are executed (pipeline is

flushed up to the violating instruction).
- If multiple instructions on pipeline cause an exception simultaneously, the one

which is first in the order of execution is taken into account.
- Interrupt requests cannot get through if an exception is signalled.
- An exception handler routine will allways see updated values of

EXCEPTION_XX –registers immediately.

Returning from the exception handler

Depending on the handler, execution can be resumed from a different context or
from the same context or it might not be resumed at all. In any case, appropriate
flags should be written to SPSR (see registers) and the resume address should be
written to PR31(the link register). Then, executing retu –instruction will update
the PSR with flags written to SPSR and load the program counter with the value
in PR31 causing the processor to start executing instructions from the desired
memory location in the desired mode.

Notes:
- Remember to initialize EXCEP_ADDR –register appropriately in boot code.

Incorrect address may cause eternal loop which will lock the processor until it is
reset.

- Even though the violating instruction cannot change the contents of the memory,
the address it refers to may appear on address bus.

- Interrupts are disabled when entering the handler routine but can be enabled by
software (care must be taken).

 4

- If the exception is caused by an interrupt service routine (see interrupts) and the
routine is disabled permanently, you should pop the return address of that routine
from the hardware stack to ensure correct operation of other interrupt routines.
This is explained in the document interrupts.

- Exceptions are an inefficient way to interface superuser mode. Use scall –
instruction instead of trap –instruction where appropriate.

-

	Exceptions
	Returning from the exception handler

