
Interface specification of the COFFEE RISC Core

COPROCESSOR_1 COPROCESSOR_3COPROCESSOR_2COPROCESSOR_0

d_addr(7:0)

data

cop_port : (40:0)

INT_HANDLER

INST_CACHE

ext_interrupt : (7:0)

COFFEE
core

clk

i_word : (31:0)

cop_exc : (3:0)

ext_handler

offset : (7:0)

i_addr : (31:0)

i_cache_miss

int_ack

int_done
int_ack

core_clock

offset : (7:0)

int_done

ext_handler

ext_interrupt : (7:0)

i_word : (31:0)

i_addr : (31:0)

i_cache_miss

cop_exc : (3:0)
cop_port : (40:0)

wr

rd

d_cache_miss

data : (31:0)

d_addr : (31:0)

pcb_wr

pcb_rd

reset_x_out

stall

data

rst_x

boot_sel

bus_ack

bus_req

rd

wr

d_cache_miss

data : (31:0)

d_addr : (31:0)

pcb_wr

pcb_rd

reset_x_out

stall

rst_x

boot_sel

bus_ack

bus_req

DATA_CACHE

PCB

BOOT_CNTRL

BUS_CONTROL

Picture 1, Interfacing core.

1 General

Picture 1 shows an example of interfacing the core. This is not the only possible way
to connect to core. Optional peripherals are drawn with dashed line. External interrupt
handler, boot agent, PCB (peripheral control block) and the coprocessors are optional.
Also the use of bus_req and bus_ack signals is optional. bus_req and bus_ack –signals
allow sharing the data bus. Boot agent can be used if the boot address has to be
determined externally. PCB is a user defined block to interface peripheral devices
directly. It can have, for example, configuration registers mapped to some of the
memory addresses. PCB address space is defined by software. Unused inputs should
be driven to a state defined in port specification.

Definitions and assumptions used in this document

The rising edge of the clock signal is the sampling instant unless otherwise specified.
Some interfacing signals are static while others are pulse type signals. Time delays
are defined in chapter ‘Timing specification’. Note the distinction between signals and
ports. An asynchronous signal is not the same as an asynchronous port! Note that an
asynchronous port can always be driven by a synchronous signal if the timing
constraints are fulfilled.

Pulse type signal

With pulse type signals an event is signalled by first driving the signal to
active state and after one or more clock cycles driving it to inactive state. The
pulse length varies depending on activities on pipeline. For example, having to
wait for a memory access can extend a pulse to multiple clock cycles long.
This kind of signal will be active on consecutive clock edges even though
signalling just one event.

Static signal
Each time a static signal is high on the active clock edge, an event is signalled.
Static signal may or may not go inactive between consecutive events
depending on timing of the events. If the signal is active on consecutive clock
edges then consecutive events are signalled.

Asynchronous signal(later referred as AS):
A signal which is evaluated in the same cycle as the inputs change. Typically
signals which have to react to a certain input condition immediately (in one
clock cycle) are asynchronous. Also signals which come from a different clock
domain are asynchronous. Both types of signals have differerent timing
specifications.

Synchronous signal(later referred as SS):

A signal which changes its value slightly after the active edge of the clock.
Typically a signal directly from an output of a flip flop (maximum of few
gates after a flip flop).

Asynchronous input port(later referred as AIP):
Input which is not sampled on clock edge (goes directly to logic). Must be
driven to a valid state time Tsx before the active edge of the clock or time Tdx
after a change in input conditions (outputs from the core).

Synchronous input port(later referred as SIP):

An input which is sampled on active clock edge. The input must be valid time
Ts before the active clock edge or time Tdx after a change in input conditions
(outputs from the core).

Synchronized input port(later referred as SZIP):

An input which uses a special synchronizer circuit (usually adds delay). The
input can change at any moment but it must be held constant for a specified
time.

Asynchronous output port(later referred as AOP):

An output which is valid after an arbitrary propagation time from the change
of inputs. This design does not have any asynchronous outputs.

Synchronous output port(later referred as SOP):

A port which drives a synchronous signal. See synchronous signal.

2 Interface descriptions

2.1 Interfacing instruction cache/instruction memory

Table 2.1, Instruction cache interfacing signals.

signal direction purpose/description
when active

port
type

I_CACHE_MISS in Instruction cache signals to the core to wait
in case of a miss.

AIP

I_WORD[31..0] in Data from the instruction cache SIP
I_ADDR[31..0] out Address of the requested word from the

instruction cache
SOP

Notes:

I_CACHE_MISS –signal must be evaluated in less than one clock cycle time. If this
is not possible, synchronization structures which prevent signal transition during
rising clock edge must be used. Memory access time can be up to sixteen clock cycles
long. The data on I_WORD –bus must be valid when specified amount of wait cycles
has elapsed from asserting a new address on I_ADDR –bus. The number of wait
cycles can be configured by software. See timing specification.

2.2 Interfacing data cache

Table 2.2, Data cache interfacing signals.

signal direction purpose/description
when active

type

D_CACHE_MISS in Data cache signals to the core to wait in
case of a miss.

AIP

DATA[31..0] inout Data to/from the Data cache/other device.
(or boot address, see Port descriptions)

SIP1

SOP
D_ADDR[31..0] inout Address of the accessed item in data

memory.
SIP1
SOP

WR out Data cache write signal. Active when
high.

SOP

RD out Data cache read signal. Active when high. SOP
BUS_REQ

in External device can request the bus by
asserting this signal. See document
‘Coffee shared data bus’

AIP

BUS_ACK out The core reponds to bus request by
asserting this signal when the bus is free.

SOP

1Bus behaviour can be asynchronous since the sampling circuitry is isolated from the
core logic until data is latched in.
Notes:

D_CACHE_MISS –signal must be evaluated in less than one clock cycle time. If this
is not possible, synchronization structures which prevent signal transition during
rising clock edge must be used. Memory access time can be up to sixteen clock cycles
long. The data on DATA –bus must be valid when specified amount of wait cycles
has elapsed from starting a new access. The number of wait cycles can be configured
by software. See timing specification.

Signals BUS_REQ and BUS_ACK doesn’t have to be used if the bus is not shared
with devices which are communicating directly with each other (for example, DMA).
See document ‘COFFEE shared data bus’ for details about shared bus.

D_ADDR might not be aligned to word boundary, that is, it might not be divisible by
four. Depending on the implementation, bits 1 downto 0 of D_ADDR can be used for
example as chip selects to allow byte addressing. It is even possible to have a 4
GIGAWORD address space instead of 4 GB space, if each address corresponds to a
32 bit word.

2.3 Interfacing coprocessors

Table 2.3, Coprocessor interfacing signals.

signal Direction purpose/description
when active

type

COP_EXC[3..0]:
COP_EXC(3) – COP 3
COP_EXC(2) – COP 2
COP_EXC(1) – COP 1
COP_EXC(0) – COP 0

In Coprocessor exception. Coprocessor can
interrupt the core by driving a pulse on
this input. Sensitive to falling edge.

SZIP

COP_PORT(40):
WR_COP

out Write to cop. Write access to
coprosessor register file.

SOP

COP_PORT(39):
RD_COP

out Read from cop. Read access to
coprosessor register file.

SOP

COP_PORT[38..37]:
C_INDX

out Coprocessor index used to address one
of the four possible coprocessors

SOP

COP_PORT[36..32]:
R_INDX

out Register index used to select the right
register from the accessed coprocessor
register bank.

SOP

COP_PORT[31..0]:
DATA

inout Data to/from the coprocessor. SOP
SIP1

1Bus behaviour can be asynchronous since the sampling circuitry is isolated from the
core logic until data is latched in from coprocessor data bus.
See timing specification.

Notes:

As the memory interfaces, also coprocessor interface can be configured by software to
use a fixed amount of wait cycles. This should be considered if the coprocessor uses a
different clock which is slower than the clock of the core. Note, that input signals
from coprocessors can be asynchronous as long as they are evaluated inside specified
time windows, see timing specification at the end of this document. General STALL
–signal can be used to freeze the core if needed, but its use shoud be avoided because
of performance penalty.

2.4 Interfacing external interrupt handler

Table 2.4, External interrupt handler interfacing signals.

signal direction purpose/description
when active

type

EXT_HANDLER/
SYNC_EN_X

in When high, core assumes that an external
interrupt handler is present and uses
OFFSET – signal when calculating
handler routine address. When low, offset
is ignored and synchronization circuitry
enabled. See document about interrupts.

AIP

OFFSET[7..0] in An offset used when calculating the
starting address of an interrupt service
routine. Used only if EXT_HANDLER –
signal is active. See notes below.

SIP

EXT_INTERRUPT
[7..0]

in Signals from interrupt sources or from the
external interrupt handler, if present. Each
signal corresponds to one interrupt source.
The input is sensitive to a falling edge of
the signal.
See notes below.

SZIP/SIP

INT_ACK out The core signals that the latest interrupt
request has been accepted and the service
routine has just started.

SOP

INT_DONE out The core signals that the an interrupt
service routine has finished.

SOP

Notes:

The timing of the EXT_INTERRUPT signal depends on the EXT_HANDLER signal.
See timing specification.

The interrupt address is calculated as follows if EXT_HANDLER – input is pulled
high:

base_addr[31 downto 12] & OFFSET[7 downto 0] & 0000,
where ‘&’ means concatenation.

The base_addr[31 downto 12] equals the upper 20 bits of the value in the
corresponding interrupt register (interrupt vector, see registers: CCB).

An interrupt request is saved internally (INT_PEND –register) and will be overwritten
if a new request is signalled before the previous one was served. If interrupts are
disabled for a long time this can be the case.

2.5 Interfacing peripheral control block

Peripheral control block is a memory mapped module used to interface and control
some of the peripherals of the core directly. It is connected to the same data and
address buses than data cache (if present). Interfacing is similar than for data cache.

Table 2.5, PCB interfacing signals

signal Direction purpose/description
when active

type

DATA[31..0] Inout Data to/from the PCB (or data memory). SIP

SOP
D_ADDR[31..0] Inout Address of the accessed item in PCB(or

data memory)
SIP

SOP
PCB_WR Out PCB write signal. Active when high.

SOP

PCB_RD Out PCB read signal. Active when high. SOP

Notes:

The wait cycle setting for data memory access applies to PCB access as well.

2.6 Other interface signals
Table 2.6, Other interfacing signals

Signal Direction Purpose/description
when active

type

RST_X In Asynchronous active low reset signal.
Synchronized inside core. See port
descriptions

SZIP

CLK In Core clock.
BOOT_SEL In When driven high, boot address is read from

the data bus. When low, core will boot at
00000000h.

AIP

STALL/STROBE In General stall input. Can be used to freeze
the pipeline of the core. Does not disable
timers neither wait cycle counters. Used as
boot address strobe if BOOT_SEL is tied
high. See timing specification.

AIP

RESET_X_OUT Out Synchronised version of RST_X –signal.
Pulses low also when internal watchdog
reset occurs.

SOP

Notes:
If boot address should be determined by external logic pull BOOT_SEL high
permanently, otherwise pull it low.

3 Port descriptions

All unused inputs should be driven to inactive state defined in the table below.

Table 3.1, Port descriptions

Name of the port dir active
state

inactive
state

type reset state 1

BUS_REQ

in high low AIP Must be driven to a
valid state

BUS_ACK out high low SOP Low
COP_EXC[3..0] in high

(sensitive
to falling

edge)

low SZIP Must be driven to a
valid state

COP_PORT(39)

RD_COP

out high low SOP Low

COP_PORT(40)

WR_COP

out high low SOP Low

COP_PORT[31..0]

DATA

inout - - SOP
SIP

Floating

COP_PORT[36..32]

R_INDX

out - - SOP all zeros

COP_PORT[38..37] out - - SOP all zeros

C_INDX
D_ADDR[31..0] inout - - SOP

SIP
Floating

D_CACHE_MISS in high low AIP Must be driven to a
valid state

DATA[31..0] inout - - SOP
SIP

Floated by the core.
A valid boot address
must be driven on
bus by external reset
logic if BOOT_SEL
is active. 2

EXT_HANDLER in high low AIP Must be driven to a
valid state

INT_ACK out high low SOP low
INT_DONE out high low SOP low
EXT_INTERRUPT[7..0] in high

(sensitive
to falling

edge)

low SZIP
/SIP

Must be driven to a
valid state

I_ADDR[31..0] out - - SOP Boot address after
few clock cycles
from asserting reset.

I_CACHE_MISS in high low AIP Must be driven to a
valid state.

I_WORD[31..0] in - - SIP -
OFFSET[7..0] in - - SIP Must be driven to a

valid state
RD out high low SOP Low
WR out high low SOP Low
PCB_RD out high low SOP Low
PCB_WR out high low SOP Low
RST_X in low high SZIP See timing

specification.
CLK in rising

edge
 Clk must have settled

before releasing reset.
BOOT_SEL in high low AIP Must be driven to a

valid state.
STALL in high low AIP Must be driven to a

valid state. Dual
function. See timing
specification.

RESET_X_OUT out low high SOP Follows RST_X –
input. See timing
specification.

1 Values which should be driven on inputs (and is driven on outputs) when reset is
active (low). After releasing reset, normal values should appear on outputs after two
or three clock cycles depending on the timing of the asynchronous reset signal.

2 When asserting rst_x signal external boot logic has to drive a valid address on data
bus if enabled by BOOT_SEL. The address is used as the starting value for program
counter. See timing specification.

4 Timing specification

Diagrams T.1 through T.14 in chapter 4 illustrate timing of COFFEE interfacing
signals. Conformance to this timing specification should always be checked after
synthesis. Table 4.1 explains markings used in figures.

4.1 Instruction memory interface timing

4.2 Data memory interface timing

TS

TD2

TD1 TD2

TD1

MISS

TH

I_CACHE_MISS

CLK

CYCLE TYPE

I_ADDR

FIGURE T.4, INSTRUCTION FETCH

WAIT

I_WORD

START

 TD1
TS TD2

TD2

TD1

TH

FIGURE T.2, DATA BUS READ ACCESS

START

CLK

WAIT MISS

DATA

D_ADDR

D_CACHE_MISS

RD

CYCLE TYPE

TDZ TDZ

D_ADDR

CYCLE TYPE

CLK

DATA

D_CACHE_MISS

WR

WAIT MISS

FIGURE T.3, DATA BUS WRITE ACCESS

START

TD1 TD2

TD2

TD1

TDZ TDZ

TDZ

ADDR

DATA

BUS_ACK

BUS_REQ

TD1 TD1

WR/RD

CYCLE TYPE

CLK

IDLE ACCESSESSED

D_ADDR

TD3

RESERVED

FIGURE T.5, DATA BUS STATE TRANSITION: RESERVED => ACCESSED

TD1

IDLE

FIGURE T.6, DATA BUS STATE TRANSITION: RESERVED => IDLE

SAMPLED ADDR

BUS_REQ

CYCLE TYPE

BUS_ACK

WR/RD

TDZ

CLK

DATA DATA

SAMPLED DATAADDR D_ADDR

TD3

RESERVED

IDLE

FIGURE T.7, DATA BUS STATE TRANSITION: ACCESSED => IDLE

WR/RD

CYCLE TYPE

D_ADDR

BUS_REQ

TDZ

TD1 TD1

DATA

BUS_ACK

CLK

DATA

ADDR

ACCESSED

ACCESSED

CLK

RESERVED

DATA

BUS_REQ

BUS_ACK

TD1TD1

FIGURE T.8, DATA BUS STATE TRANSITION: ACCESSED => RESERVED

D_ADDR

CYCLE TYPE

WR/RD

TD3

TD1

TDZ
TDZ

ADDR

IDLE DATA

D_ADDR

DATA

FIGURE T.9, DATA BUS STATE TRANSITION: IDLE => RESERVED

BUS_ACK

CYCLE TYPE

TD3

IDLE

WR/RD

CLK

TD1BUS_REQ

RESERVED

IDLE ADDR

TDZ

4.3 Coprocessor interface timing

DATA

C_INDX

FIGURE T.10, COPROCESSOR READ ACCESS

R_INDX

TS

WAIT

CLK

RD_COP

DATA

START

SAMPLED DATA

TD1

CYCLE TYPE

TH

IDLE

DATA

C_INDX

FIGURE T.10, COPROCESSOR READ ACCESS

R_INDX

TS

WAIT

CLK

RD_COP

DATA

START

SAMPLED DATA

TD1

CYCLE TYPE

TH

IDLE

INT_PEND VALID

COP_EXC

CLK

FIGURE T.14, COP_EXC -SIGNAL TIMING

T7

4.4 Interrupt signal timing

VALID

OFFSET

EXT_INTERRUPT

CLK

FIGURE T.13, INTERRUPT SIGNAL TIMING WHEN EXT_HANDLER/SYNC_EN_X -INPUT IS PULLED LOW

INT_DONE

INT_ACK

INT_PEND

TD1 TD1

T7

INT_DONE

CLK

INT_ACK

EXT_INTERRUPT

VALIDOFFSET

T6

TD1

TS TH

TD1

INT_PEND

FIGURE T.12, INTERRUPT SIGNAL TIMING WHEN EXT_HANDLER/SYNC_EN_X -INPUT IS PULLED HIGH

VALID

4.5 Reset signal timing & Timing key

Figure T.1 above illustrates signal timing when boot address is provided externally

via data bus. Latching boot address from data bus is controlled by dual function input

STALL/STROBE. A falling edge of STALL/STROBE –input causes the core to

sample data bus. RST_X and STALL/STROBE –inputs can be driven

asynchronously. Synchronizing circuitry adds some delay to signals as can be seen

from timings constraints. Boot address and RST_X –signal can be driven

simultaneously. A simple reset scheme might go as follows: Drive RST_X low and

STALL/STROBE high while simultaneously driving boot address to data bus. Hold

RST_X and boot address for a minimum of 6 clock cycles. In halfway of RST_X

pulse pull STALL/STROBE low.

All delays (TDx) are relative to previous rising edge of the CLK –signal.

RESET_X_OUT

TD1

FIGURE T.1, SIGNAL TIMING AT RESET

BOOT_ADDR

STALL

CLK

VALID I_ADDR

T10

RST_X

VALID

T9

T8

TD1

 Table 4.1, Mnemonics and keywords in figures T.1 through T.14

keyword explanation notes

Propagation delays

TD1 Delay from rising clock edge to the

moment when data is valid on output of a D

flip-flop.

Technology

dependent.

TD2 Maximum delay of d_cache_miss –signal.

Refer to preliminary synthesis results.

TD3 Maximum delay of the bus_req –signal.

Refer to results of preliminary synthesis.

Suitable synthesis

constraints for

bus_req –input must

be set if core is

synthesised

separately.

TDZ TD1 + delay of a tri-state gate See synthesis notes

about handling tri-

state control signals.

Pulse lengths

T6 Minimum length of interrupt pulse,

synchronous mode:

2 * (TH + TS)

should be driven

synchronously.

T7 Minimum length of interrupt/cop exception

pulse:

1,5 * length of clock cycle.

Can be

asynchronous.

T8 Minimum length of reset pulse:

1,5 * length of clock cycle(boot from zero).

6 * length of clock cycle(external boot

address).

T9 Minimum T9:

3 * length of clock cycle.

T10 Minimum T10:

3 * length of clock cycle.

Other time constraints

TS Setup time of a flip-flop: data input must

have settled time TS before the next rising

clock edge.

TH Hold time of a flip-flop: data input must not

change before time TH after rising clock

edge.

Technology

dependent.

keywords used in diagrams

IDLE DATA

IDLE ADDR

SAMPLED

DATA

SAMPLED

ADDR

Data and address which are driven to bus

by core when bus is in idle state. Should be

the values from previous access unless the

bus is floated during the last RESERVED –

cycle.

ADDR

DATA

Valid address or data of an active access.

IDLE Idle cycle of the bus, no active accesses.

Core drives last values on bus.

ACCESSED Core owns the bus and is performing write

or read access.

RESERVED An external device owns the bus.

	Definitions and assumptions used in this document
	2 Interface descriptions

	2.1 Interfacing instruction cache/instruction memory
	
	I_CACHE_MISS

	2.2 Interfacing data cache
	2.3 Interfacing coprocessors
	2.4 Interfacing external interrupt handler
	2.5 Interfacing peripheral control block
	
	
	Table 2.5, PCB interfacing signals

	The wait cycle setting for data memory access applies to PCB access as well.
	2.6 Other interface signals
	3 Port descriptions
	
	Table 3.1, Port descriptions

	4 Timing specification
	
	
	Propagation delays
	Pulse lengths
	Other time constraints

