
Interrupts

 1

Interrupts

General

COFFEE core currently supports connecting eight external interrupt sources directly. If
coprocessors are not connected the four inputs reserved for coprocessor exception
signalling can be used as interrupt request lines giving possibility to connect twelve
sources. An external interrupt handler can be connected to expand the number of sources
even further.

If internal interrupt handler is used, the priorities between sources can be set by
software, with external handler, priorities will be fixed according to table below. Note
that priorities for coprocessor exceptions/interrupts are always set by software.

Internal exception handler has synchronization circuitry allowing signals to be directly
connected to the core. If an external handler is used, synchronization is bypassed in order
to reduce signalling latency. See interface document.

Status signals are provided to give feedback about the status of the latest interrupt
request. Interrupt sources can be masked individually and disabled or enabled all at once
using di and ei –instructions.

All interrupts are vectored. The address of an interrupt service routine can be the
corresponding vector directly (see interrupt registers) or a combination of the vector and
an offset given externally.

Table 1, Interrupt priorities if external handler is used, 0 - highest.

Priority Name
coprocessor number 0 exception/interrupt
coprocessor number 1 exception/interrupt
coprocessor number 2 exception/interrupt software

controlled coprocessor number 3 exception/interrupt
15 external interrupt 0
15 external interrupt 1
15 external interrupt 2
15 external interrupt 3
15 external interrupt 4
15 external interrupt 5
15 external interrupt 6
15 external interrupt 7

Interrupts

 2

Interrupt interface modes

Two interfacing modes are supported: external handler and internal handler The mode is
selected by EXT_HANDLER –signal. A summary is given in the table below. Note that
an external handler usually allows priorities between sources to be set quite freely. In this
case an external handler sees a fixed priority between the lines it is driving. The user may
see whatever configuration.

table 2, Interrupt interface modes

mode/
EXT_HANDLER state

request signal
timing

interrupt vector calculation priorities

internal handler / LOW asynchronous BASE address directly 1 set by software (see
configuration registers)

external handler / HIGH synchronous BASE(31 downto 12) &
OFFSET & “0000” 2

fixed between lines
(usually configurable
via external handler)

1 BASE address is set by software. See CCB configuration registers.
2 8 bit OFFSET provided by an external handler, & means concatenation. Coprocessor
exceptions/interrupts do not use OFFSET.

Signalling an interrupt

An interrupt request is signalled by driving a high pulse on one of the interrupt lines. The
timing of the pulse depends on the mode: whether an external handler is used or not. The
timing of the coprocessor interrupt/exception lines is fixed. See interface –document
about the timing details. Each interrupt line has a pulse detection ciruitry and an interrupt
request gets through when that circuitry sees a pulse, that is, after seeing a falling edge. If
an external handler is used, the offset should be driven simultaneously with the request
line, see interface –document.

Once detected, a request is saved in a register called INT_PEND, which is visible to the
software. After this it has to go through the priority resolving and masking stage. The
following conditions have to be true for a pending request to get through:

- interrupts enabled: IE –bit in processor status register (PSR) must be high.
- Interrupt mask register has to have a high bit (‘1’) in the corresponding position.
- No interrupts with higher priority are pending or in service.
- No exceptions on pipeline (see document about exceptions)

Once a request gets through, the processor starts execution of an interrupt service routine
as soon as possible: pipeline is executed to a point where it is safe to switch to interrupt
service routine. This takes 1 – 3 cycles depending on the contents of the pipeline. When a
service routine is started the corresponding bit in INT_SERV –register is set. At the
same time, the processor drives a pulse to INT_ACK –output in order to signal to an
external handler that the latest request got through and is now in service. This is the
earliest point where a new request from the same source can be accepted.

Interrupts

 3

The latency from asserting an external interrupt signal to the moment when control of the
core detects the signal is multiple cycles. The latency also depends on the mode of
operation of the interrupt interface. Latency is calculated from the falling edge of the
EXT_INTERRUPT –signal. Different cases are shown in the table below.

Table 3, Interrupt signalling latency
Interface type signal

synchronization
pulse detection priority

check
and
masking

total cycles

asynchronous
(EXT_HANDL
ER low)

2 clock cycles 1 clock cycle 4

synchronous
(EXT_HANDL
ER high)

-

1 clock cycle or
less depending
on timing of the
EXT_INTERRU
PT –signal.

1 clock cycle 2

Priority resolving

A priority for a particular source is set by writing a four bit value in a field reserved for
that source in the EXT_INT_PRI or COP_INT_PRI –register. Priority can have any value
between 0 and 15, zero being the highest priority.

Whether the priority is fixed (external handler used) or set by software, priority resolving
works the same way. If multiple interrupts are signalled simultaneously, the one with the
highest priority (lowest number) will be served first. Note that for coprocessor
exceptions/interrupts the priority can allways be set by software.

If multiple sources have the same priority, resolving is performed internally in the
following order (COP0_INT having the highest priority):
COP0_INT, COP1_INT, COP2_INT, COP3_INT,
EXT_INT0, EXT_INT1, EXT_INT2, EXT_INT3,
EXT_INT4, EXT_INT5, EXT_INT6, EXT_INT7.

If the same interrupt that is currently in service, is signalled, the interrupt service routine
is restarted as soon as it has finished (of course assuming there’s no interrupt requests
with higher priority pending). A request with higher priority can interrupt the current
service routine if interrupts have been re-enabled with ei –instruction (nesting of
interrupts).

Interrupts

 4

Switching to an interrupt service routine

The following steps are taken when switching to an interrupt service routine:

- return address is saved to hardware stack (a special logic structure to allow fast
switching)

- processor status register (PSR) is saved to hardware stack
- condition register CR0 is saved to hardware stack.
- The start address of an interrupt service routine is calculated(see table 2) and

placed to program counter.
- signal INT_ACK is pulsed (except with coprocessor exceptions/interrupts!).
- The bit corresponding to the interrupt source is set high in INT_SERV –register.
- The bit corresponding to the interrupt source is cleared from INT_PEND –

register.
- Further interrupts are disabled by setting IE bit low in PSR
- Processor status: user mode and, instruction decoding are set according to control

registers INT_MODE_IL and INT_MODE_UM. (If superuser –mode is set,
register set 2 is selected as default for reading and writing)

- Execution of the interrupt service routine in question is started.

Returning from an interrupt service routine

An interrupt service routine has to execute a reti –instruction in order to resume program
execution where it was interrupted. This causes the following things to happen:

- Processor status is restored from the hardware stack
- CR0 is restored from the hardware stack.
- Program counter is restored from the hardware stack.
- signal INT_DONE is pulsed (except with coprocessor exceptions/interrupts!).
- The INT_SERV bit is cleared.
- Interrupts are enabled if they were enabled before entering the service routine.

(There is a possibility that di –instruction is executed just before entering the
service routine, but after a request got through in which case the interrupt is
served but interrupts will be disabled on return)

In chapter Tricks it is explained how to clear a pending interrupt request without
executing a service routine.

Interrupts

 5

Internal interrupt handler control & status registers

Bit positions and interrupt sources are associated as follows:
(INT_MODE_IL, INT_MODE_UM, INT_MASK, INT_SERV, INT_PEND)

Bit 11 – EXT_INT7,
Bit 10 – EXT_INT6,
...
Bit 4 – EXT_INT7,
Bit 3 – COP3_INT,
...
Bit 0 – COP0_INT.

Table xx, Internal interrupt handler registers (in CCB)

offset mnemonic width description notes
02h COP0_INT_VEC 32 Co-processor 0 interrupt service routine start

address.
03h COP1_INT_VEC 32 Co-processor 1 interrupt service routine start

address.
04h COP2_INT_VEC 32 Co-processor 2 interrupt service routine start

address.
05h COP3_INT_VEC 32 Co-processor 3 interrupt service routine start

address.
06h EXT_INT0_VEC 32 External interrupt 0 service routine base address.
07h EXT_INT1_VEC 32 External interrupt 1 service routine base address.
08h EXT_INT2_VEC 32 External interrupt 2 service routine base address.
09h EXT_INT3_VEC 32 External interrupt 3 service routine base address.
0ah EXT_INT4_VEC 32 External interrupt 4 service routine base address.
0bh EXT_INT5_VEC 32 External interrupt 5 service routine base address.
0ch EXT_INT6_VEC 32 External interrupt 6 service routine base address.
0dh EXT_INT7_VEC 32 External interrupt 7 service routine base address.

should be properly
aligned.

0eh INT_MODE_IL 12 Instruction decoding mode flags for interrupt
routines.

0fh INT_MODE_UM 12 User mode flags for interrupt routines.

See registers –
document: PSR

10h INT_MASK 12 Register for masking external and cop interrupts
individually. A low bit (‘0’) means blocking an
interrupt source, a high bit enables an interrupt.

11h INT_SERV 12 Interrupt service status bits (active high).
12h INT_PEND 12 Pending interrupt requests(active high).

Read only. See
chapter Tricks.

13h EXT_INT_PRI 32 Bits 31 downto 28 : INT 7 priority
Bits 27 downto 24 : INT 6 priority

...
Bits 7 downto 4 : INT 1 priority
Bits 3 downto 0 : INT 0 priority

14h COP_INT_PRI 16 Bits 15 downto 12 : COP3 priority
Bits 11 downto 8 : COP2 priority
Bits 7 downto 4 : COP1 priority
Bits 3 downto 0 : COP0 priority

0 – highest priority
15 – lowest priority
Priorities for external
interrupts can only be
set if internal handler
is used.

Interrupts

 6

Tricks & notes

Notes
- di –instruction itself can be interrupted! It is guaranteed that instructions between di, ei
–pair cannot be interrupted but an interrupt can take place between di and the following
instruction.

Clearing a pending interrupt without running the service routine

This concerns only clearing a pending request from the internal handler register!
The ability to clear bits in the INT_PEND –register directly would lead to situations
where an external interrupt handler would not know the real status of the latest interrupt
request because INT_ACK -signal would never go high for these ‘canceled’ interrupts.
This kind of inconsistency is not acceptable and that’s why INT_PEND is a read only
register.

If there is a need to ‘cancel’ a request it can be done as follows (If internal CCB is
mapped to protected memory area, superuser mode is needed):

- Interrupts should be disabled during these operations!
- Save the current value in the interrupt vector register of the int source in question.
- Replace the old vector with a new one which points to a dummy routine

(remember OFFSET, if external handler is present) which executes reti –
instruction only (and maybe some acknowledge instructions for external handler).

- Set the interrupt source to highest priority and make sure that no other source
shares the same priority (of course save old values).

- Set mask bit for the interrupt source in question (save old value of INT_MASK)
- enable interrupts
- poll the INT_PEND register, disable interrupts when the bit in question is low.
- Restore vector and priorities.
- Continue normally

Do not do this!

- Do not change interrupt priorities while in interrupt service routine if you use nested
interrupts (unless you are 100% sure that a new request from a source cannot arise before
a service routine is finished). In extreme cases this can lead to hardware stack overflow if
interrupt nesting level is twelve and priorities are changed so that multiple requests from
a single source can be active simultaneously. Normally an interrupt service routine
cannot be interrupted by a new request from the same source because of priority
resolving.

	General
	Signalling an interrupt
	The latency from asserting an external interrupt signal to the moment when control of the core detects the signal is multiple cycles. The latency also depends on the mode of operation of the interrupt interface. Latency is calculated from the falling edg
	
	
	
	
	
	
	
	Table 3, Interrupt signalling latency

	Priority resolving
	Switching to an interrupt service routine
	Returning from an interrupt service routine
	Internal interrupt handler control & status registers
	Table xx, Internal interrupt handler registers (in CCB)

	Notes
	Do not do this!

