
Shared data bus

General

COFFEE processor core allows sharing it’s data memory bus with other devices. In

simple applications all peripherals and data memory can be connected directly to

COFFEE core data bus. Multiprocessor systems with shared memory are also possible.

However, it should be noted that having too many devices communicating via shared bus

eventually reduces performance since core will be stalled every time it needs the bus but

it’s not available.

Handshaking and accessing

Before performing access, external device has to signal a request to COFFEE core. If

multiple devices are connected, a bus arbitrer must be used. Here, we assume that arbitrer

or some other device is communicating with core. Two signals are used for handshaking:

bus_req(input to core) and bus_ack(output from core). Handshaking scheme is basicly

requesting and passing ‘token’, that is the ownership of the bus.

An external device has to request the bus by asserting bus_req -signal. It can access the

bus when core responds by asserting bus_ack -signal. This will happen immediately if

core is not accessing the bus or after current access if the bus is in use. An external device

must hold bus_req -signal active throughout it's access. It can perform several

consecutive data transfers if core does not request the bus back (which is seen from

bus_ack -signal going low).When core requests the bus by driving bus_ack -low an

external device can finish current access, but must pass the token to core(this is only a

recommendation, solution will depend on application). This is signalled by driving

bus_req low. If an external device has finished it's access and has no further transfers, the

token is automatically passed to core even if it does not request it. This happens when the

device deasserts bus_req –signal. This guarantees that the core can access the bus

immediately if there’s no traffic(in other words, core has the token by default). After

reset, core owns the token.

This simple scheme should be adequate for most applications: It's fair since the bus

cannot be locked by one device and it's predictable because the bus will be available as

soon as an active access is finished. Also the core, which is assumed to use the bus most,

does not have to request the token if there's no traffic on bus.

When an external device owns the token, core floats both address and data lines, read and

write controls will be low (signals rd,wr,pcb_rd and pcb_wr). Likewise, any other device

must float the bus when core owns the token. Note that when core has the token but is not

using the bus (bus idle cycle), it holds values of the last access on data and address

lines(power saving feature).

Note, that read and write –signals from multiple devices must be connected via OR –gate

because they are not tri-state signals. For detailed description of data memory interface

signals, see document “COFFEE_interface”.

Timing

Figures T.5 through T.9 illustrate the timing of signals of the shared bus interface. Table 1 explains

mnemonics and keywords.

 TD3
TD1

FIGURE T.5, DATA BUS STATE TRANSITION: RESERVED => ACCESSED

RESERVED

D_ADDR

ACCESSED IDLECYCLE TYPE

WR/RD TDZ

ADDR

TD1 TD1

BUS_ACK

CLK

BUS_REQ

DATA

 TDZ

BUS_ACK

SAMPLED ADDR

CLK

DATA

BUS_REQ

D_ADDR

WR/RD

TD3

RESERVED CYCLE TYPE

FIGURE T.6, DATA BUS STATE TRANSITION: RESERVED => IDLE

IDLE

SAMPLED DATAADDR

DATA

CLK

DATA

ACCESSED

TD1

WR/RD

CYCLE TYPE

BUS_ACK

BUS_REQ

TD1

FIGURE T.7, DATA BUS STATE TRANSITION: ACCESSED => IDLE

IDLE

D_ADDR ADDR

TDZ

DATA

ACCESSED

ADDR

RESERVED

TD3 TD1

D_ADDR

CLK

WR/RD

BUS_ACK

TDZ

TD1BUS_REQ

DATA

TD1

FIGURE T.8, DATA BUS STATE TRANSITION: ACCESSED => RESERVED

CYCLE TYPE

TDZ

Table 1, Mnemonics and keywords in figures T.5 through T.9

keyword explanation notes

TD1 Delay from rising clock edge to the moment when data

is valid on output of a D flip-flop.

Technology dependent.

TD3 Maximum delay of the bus_req –signal. Refer to results

of preliminary synthesis.

Suitable synthesis

constraints for bus_req –

input must be set. See

interface specification.

TDZ TD1 + delay of a tri-state gate See synthesis notes about

handling tri-state control

signals.

IDLE DATA

IDLE ADDR

SAMPLED DATA

SAMPLED ADDR

Data and address which are driven to bus by core when

bus is in idle state. Should be the values from previous

access unless the bus is floated during the last

RESERVED –cycle.

ADDR

DATA

Valid address or data of an active access.

IDLE Idle cycle of the bus, no active accesses. Core drives

last values on bus.

IDLE ADDR

WR/RD

DATA

BUS_ACK

CYCLE TYPE

CLK

IDLE

BUS_REQ

D_ADDR

RESERVED

FIGURE T.9, DATA BUS STATE TRANSITION: IDLE => RESERVED

TD1

TDZ

IDLE DATA

TD3

ACCESSED Core owns the bus and is performing write or read

access.

RESERVED An external device owns the bus.

	General
	Handshaking and accessing

