
COFFEE Core USER MANUAL
July 2007

Contents
1. Interface specification of the COFFEE RISC Core

1.1. Shared Data Bus

1.2. Interfacing coprocessors

2. Registers

2.1. General

2.2. Set 1: General Purpose Registers

2.3. Set 2: General Purpose Registers

2.4. Set 2: Special Purpose Registers

2.5. Condition Registers

2.6. CCB Registers

2.7. Register usage of a privileged user

2.8. Register limitations in 16 bit mode

2.9. Register value after reset

3. Timers

3.1. Timer registers

4. Processor Operating Mode

4.1. 16-bit and 32-bit decoding modes

4.2. Limitations in 16-bit mode

4.3. Super user mode

4.4. Resetting the processor

4.5. Configuring the processor

5. Interrupt and Exceptions

5.1. Interrupts

5.2. Exceptions

5.3. Handling interrupts and exceptions

6. Instruction Set Specifications

6.1. General information

6.2. Instruction definition

6.3. Instruction execution cycle times

6.4. ISA summary

1. Interface specification of the COFFEE RISC Core

COPROCESSOR_1 COPROCESSOR_3COPROCESSOR_2COPROCESSOR_0

d_addr(7:0)

data

cop_port : (40:0)

INT_HANDLER

INST_CACHE

ext_interrupt : (7:0)

COFFEE
core

clk

i_word : (31:0)

cop_exc : (3:0)

ext_handler

offset : (7:0)

i_addr : (31:0)

i_cache_miss

int_ack

int_done
int_ack

core_clock

offset : (7:0)

int_done

ext_handler

ext_interrupt : (7:0)

i_word : (31:0)

i_addr : (31:0)

i_cache_miss

cop_exc : (3:0)
cop_port : (40:0)

wr

rd

d_cache_miss

data : (31:0)

d_addr : (31:0)

pcb_wr

pcb_rd

reset_x_out

stall

data

rst_x

boot_sel

bus_ack

bus_req

rd

wr

d_cache_miss

data : (31:0)

d_addr : (31:0)

pcb_wr

pcb_rd

reset_x_out

stall

rst_x

boot_sel

bus_ack

bus_req

DATA_CACHE

PCB

BOOT_CNTRL

BUS_CONTROL

Figure 1.1 Core Interface

1.1. Shared data bus
COFFEE processor core allows sharing its data memory bus with other devices. In simple

applications all peripherals and data memory can be connected directly to COFFEE core

data bus. Multiprocessor systems with shared memory are also possible. However it

should be noted that having too many devices communicating via shared bus eventually

reduces performance since core will be stalled every time it needs the bus but it’s not

available.

Handshaking and accessing
Before accessing the bus, external device has to signal a request to COFFEE core. If

multiple devices are connected, a bus arbiter must be used. Here, we assume that arbiter

or some other device is communicating with core. Two signals are used for handshaking:

bus_req (input to core) and bus_ack (output from core). Handshaking scheme is basically

requesting and passing ‘token’, that is the ownership of the bus.

An external device has to request the bus by asserting bus_req signal. It can access the

bus when core responds by asserting bus_ack signal. This will happen immediately if

core is not accessing the bus or after current access if the bus is reserved by core. An

external device must hold bus_req signal active throughout its access. It can perform

several consecutive data transfers if core does not request the bus back (which is seen

from bus_ack -signal going low).When core requests the bus by driving bus_ack -low an

external device can finish current access, but must pass the token to core(this is only a

recommendation, solution will depend on application). This is signaled by driving

bus_req low. If an external device has finished its access and has no further transfers, the

token is automatically passed to core even if it does not request it. This happens when the

device lowers bus_req signal. This guarantees that the core can access the bus

immediately if there’s no traffic (in other words, core has the token by default). After

reset, core owns the token.

This simple scheme should be adequate for most applications: it's fair since the bus

cannot be locked by one device and it's predictable because the bus will be available as

soon as an active access is finished. Also the core, which is assumed to use the bus

mostly, does not have to request the token if there's no traffic on bus.

When an external device owns the token, core floats both address and data lines, read and

write controls will be low (signals rd, wr, pcb_rd and pcb_wr). Likewise any other device

must float the bus when core owns the token. Note that when core has the token but is not

using the bus (bus idle cycle), it holds values of the last access on data and address lines

(power saving feature).

Note, that read and write signals from multiple devices must be connected via OR gate

because they are not tri-state signals. For detailed description of data memory interface

signals, see COFFEE interface.

About timing
Bus_req is an asynchronous input while bus_ack is a synchronous output. Appropriate

timing constraints must be applied to bus_req to get correct results from synthesis if core

is synthesized separately.

Timing diagrams
Figures T.5 through T.9 illustrate the timing of signals of the shared bus interface. Table

1 explains mnemonics and keywords. All delays are relative to previous rising edge of

the clock CLK.

 TD3
TD1

FIGURE T.5, DATA BUS STATE TRANSITION: RESERVED => ACCESSED

RESERVED

D_ADDR

ACCESSED IDLECYCLE TYPE

WR/RD TDZ

ADDR

TD1 TD1

BUS_ACK

CLK

BUS_REQ

DATA

CLK

DATA

ACCESSED

TD1

WR/RD

CYCLE TYPE

BUS_ACK

BUS_REQ

TD1

FIGURE T.7, DATA BUS STATE TRANSITION: ACCESSED => IDLE

IDLE

D_ADDR ADDR

TDZ

DATA

 TDZ

BUS_ACK

SAMPLED ADDR

CLK

DATA

BUS_REQ

D_ADDR

WR/RD

TD3

RESERVED CYCLE TYPE

FIGURE T.6, DATA BUS STATE TRANSITION: RESERVED => IDLE

IDLE

SAMPLED DATAADDR

DATA

ACCESSED

ADDR

RESERVED

TD3 TD1

D_ADDR

CLK

WR/RD

BUS_ACK

TDZ

TD1BUS_REQ

DATA

TD1

FIGURE T.8, DATA BUS STATE TRANSITION: ACCESSED => RESERVED

CYCLE TYPE

TDZ

IDLE ADDR

WR/RD

DATA

BUS_ACK

CYCLE TYPE

CLK

IDLE

BUS_REQ

D_ADDR

RESERVED

FIGURE T.9, DATA BUS STATE TRANSITION: IDLE => RESERVED

TD1

TDZ

IDLE DATA

TD3

Table 1.1 Mnemonics and keywords used in figures T.5 through T.9
Keyword Explanation Notes

TD1 Delay from rising clock edge to the moment

when data is valid on output of a D flip-flop.

Technology

dependent.

TD3 Maximum delay of the bus_req –signal. Refer

to results of preliminary synthesis.

Suitable synthesis

constraints for

bus_req –input must

be set. See interface

specification.

TDZ TD1 + delay of a tri-state gate See synthesis notes

about handling tri-

state control signals.

IDLE DATA

IDLE ADDR

SAMPLED

DATA

SAMPLED

ADDR

Data and address which are driven to bus by

core when bus is in idle state. Should be the

values from previous access unless the bus is

floated during the last RESERVED –cycle.

ADDR

DATA

Valid address or data of an active access.

IDLE Idle cycle of the bus, no active accesses. Core

drives last values on bus.

ACCESSED Core owns the bus and is performing write or

read access.

RESERVED An external device owns the bus.

1.2. Interfacing coprocessors

Table 1.2 Coprocessor interfacing signals.

Signal Direction
from the
core side

Purpose/description
when active

COP_EXC[3..0]:

COP_EXC(3) – COP 3

COP_EXC(2) – COP 2

COP_EXC(1) – COP 1

COP_EXC(0) – COP 0

In Coprocessor exception.

Coprocessor can interrupt the

core by activating this signal.

COP_PORT(40):

WR_COP

out Write to cop. Write access to

coprocessor register file.

COP_PORT(39):

RD_COP

out Read from cop. Read access to

coprocessor register file.

COP_PORT[38..37]:

C_INDX

out Coprocessor index used to

address one of the four possible

coprocessors

COP_PORT[36..32]:

R_INDX

out Register index used to select the

right register from the accessed

coprocessor register bank.

COP_PORT[31..0]:

DATA

inout Data to/from the coprocessor.

stall in Freezes the whole core! This

signal does not strictly speaking

belong to coprocessor interface

but can be used if no other

solution is available.

2. Registers

2.1. General

COFFEE has two different register sets. The first set (SET 1) is intended to be used by

application programs. The second set of registers (SET 2) is for privileged software

which could be an operating system or similar. SET 2 is protected from application

program. Privileged software can access both sets. There’s a total of 32 registers in both

sets including general purpose registers (GPRs) and special purpose registers (SPRs).

In addition COFFEE has eight condition registers (CRs) which are used with conditional

branches or when executing instructions conditionally. These are visible to application

software as well as to privileged software.

Besides the register bank described here, COFFEE has another register bank, CCB (core

control block), which is mapped to memory (accessed using load and store instructions).

CCB is for controlling the processor operation and as such should be configured by boot

code. CCB also contains few status registers. Note that, CCB can be extended with an

external configuration block!

The usage of general purpose registers is not restricted by hardware in any way.
 Table 2.1 Registers

SET 1 SET 2
R0 GPR 32 bits PR0 GPR 32 bits

R1 GPR 32 bits PR1 GPR 32 bits

... ...

R28 GPR 32 bits PR28 GPR 32 bits

R29 GPR 32 bits PR29 PSR 8 bits

R30 GPR 32 bits PR30 SPSR 32 bits

R31 GPR/LR 32 bits PR31 GPR/LR 32 bits

2.2. SET 1: General Purpose Registers
SET 1 has 32 identical general purpose registers R0...R31 with one exception: R31 is

used as a link register (LR) with some instructions. The programmer is free to use R31

for any other purpose as long as its special behavior is taken into account. All general

purpose registers (and the link register) are 32 bits wide.

2.3. SET 2: General Purpose Registers
SET 2 has 30 identical general purpose registers PR0...PR28 and PR31 with one

exception: PR31 is used as a link register by some instructions. The programmer is free to

use PR31 for any other purpose as long as its special behavior is taken into account. All

general purpose registers (and the link register) are 32 bits wide.

2.4. SET 2: Special Purpose Registers
There’s two special purpose registers in SET 2: PSR and SPSR. PSR is eight bits wide.

When reading data from PSR the ‘non existent’ bits are read as zeros. Writing to a read

only register (PSR) is ignored.

PSR (register index 29)
Processor Status Register is a read only register and contains the flags explained below.

Bits 7 .. 5 are reserved for future extensions.

RESERVED IE IL RSWR RSRD UM

7...5 4 3 2 1 0

• IE = 1: Interrupts enabled, IE = 0: Interrupts disabled.

• IL = 1: Instruction word length is 32 bits, IL = 0: Instruction word length is 16

bits.

• RSWR bit selects which register set to use as target:

• RSWR = 1: SET2, super users set; RSWR = 0: SET1, users set.

• RSRD bit selects which register set to use as source:

• RSRD = 1: SET2, super users set; RSRD = 0: SET1, users set.

• UM indicates which user mode the processor is in:

• UM = 0: super user mode, UM = 1 : user mode.

• RESERVED: Read as zeros.

SPSR (register index 30)
SPRS is used to save PSR flags when changing user mode by executing scall instruction.

It can be also used to set mode flags for the user: IE and IL flags are copied from SPSR to

PSR when retu instruction is executed. Note that bits 31 .. 5 are writable but only bits 7 ..

0 are saved in case of scall.

2.5. Condition Registers
There are eight three bit wide condition registers C0...C7 (visible both to application

software and privileged software). Condition registers are used with conditional branches

or when executing instructions conditionally. Each register contains three flags: Z (Zero),

N (Negative) and C (Carry). When executing compare instructions or some arithmetic

instructions these three flags are calculated and saved to the selected CR (arithmetic

instructions always save flags to C0). When conditionally branching or executing, flags

from the selected CR are compared to match a certain condition given by the

programmer. See chapters ‘conditional execution’ and ‘instruction specifications’ for

more information.

2.6. CCB registers
Note, that ‘byte’ addresses (that is consecutive addresses) are used in table below. 256

consecutive addresses are reserved for core configuration block. Addresses beyond

CCB_BASE + FFh can be configured to point to an external peripheral configuration

block (PCB), if present.

Registers which are shorter than 32 bits:

• LSB of a GPR corresponds to LSB of the short register in CCB.

• Unused bits read as zeros.

• For code compatibility with future versions, you should write unused bits as you

would if there were more bits (interrupt masking, for example).

Core control block (CCB)
Offset Mnemonic Width Description/usage Notes

00h CCB_BASE 32 The content of this register defines

the base address of the CCB block.

256 consecutive memory locations

starting from [CCB_BASE] are

reserved for CCB registers. All

memory accesses in range

[CCB_BASE] to [CCB_ ASE] +

255 map to CCB registers.

The base address has

to be aligned to 256B

boundary, that is, bits

7 .. 0 has to be zeros.

You need to have at

least one instruction

between the one

remapping the CCB

(st instruction) and

one accessing CCB at

new location

01h PCB_BASE 32 The content of this register defines

the first address of peripheral address

space. All memory accesses in range

[PCB_BASE] to [PCB_END] map

to an external device(s) connected to

data memory bus. Accesses to

peripheral devices activate pcb_rd

and pcb_wr signals instead of rd and

wr signals.

See note 2 below

02h PCB_END 32 The content of this register defines

the last address of peripheral address

space. All memory accesses in range

[PCB_BASE] to [PCB_END] map to

an external device(s) connected to

data memory bus. Accesses to

peripheral devices activate pcb_rd

and pcb_wr signals instead of rd and

wr signals.

03h PCB_AMASK 32 This register is used to define a mask

for peripheral addresses. The address

driven on address bus in constructed

by masking the actual address with

the contents of this register.

04h COP0_INT_VEC 32 Co-processor 0 interrupt service See interrupts

routine start address

05h COP1_INT_VEC 32 Co-processor 1 interrupt service

routine start address

See interrupts

06h COP2_INT_VEC 32 Co-processor 2 interrupt service

routine start address

See interrupts

07h COP3_INT_VEC 32 Co-processor 3 interrupt service

routine start address

See interrupts

08h EXT_INT0_VEC 32 External interrupt 0 service routine

base address

See interrupts

09h EXT_INT1_VEC 32 External interrupt 1 service routine

base address

See interrupts

Ah EXT_INT2_VEC 32 External interrupt 2 service routine

base address

See interrupts

Bh EXT_INT3_VEC 32 External interrupt 3 service routine

base address

See interrupts

Ch EXT_INT4_VEC 32 External interrupt 4 service routine

base address

See interrupts

Dh EXT_INT5_VEC 32 External interrupt 5 service routine

base address

See interrupts

Eh EXT_INT6_VEC 32 External interrupt 6 service routine

base address

See interrupts

Fh EXT_INT7_VEC 32 External interrupt 7 service routine

base address

See interrupts

10h INT_MODE_IL 12 The content of this register defines

whether the interrupt service routines

should be executed in 16 bit mode or

in 32 bit mode. A high bit (’1’)

causes the core to switch to 32 bit

mode when entering the interrupt

service routine in question, a low bit

(’0’) indicates execution of the

service routine in 16 bit mode.

Bit associations:

See note 3 below.

See interrupts and

processor status

register.

11h INT_MODE_UM 12 The content of this register defines

whether the interrupt service routines

should be executed in user mode or

in super-user mode. A high bit (’1’)

causes the core to switch to user

mode when entering the interrupt

service routine in question, a low bit

(’0’) indicates execution of the

service routine in super-user mode.

12h INT_MASK 12 Bits in this register can be used to

block interrupts from individual

sources. A low bit (’0’) causes

interrupt requests from the

corresponding source to be blocked.

A high bit (’1’) allows requests to

pass through.

13h INT_SERV 12 This is a read-only status register

having a flag for each interrupt

source. A high flag (’1’) means that

an interrupt request from the

corresponding source has been

accepted. In practice this means that

the interrupt service routine is being

executed or it was executed until

another request with higher priority

interrupted the service routine. In this

case there are multiple flags high in

the INT_SERV register. Executing

reti instruction at the end of an

interrupt service routine will cause

the corresponding flag to go low.

Read only. See

interrupts.

14h INT_PEND 12 This is a read-only status register

having a flag for each interrupt

source. A high flag (’1’) means that

an interrupt request from the

corresponding source has been

detected and is waiting to get

accepted. A flag is lowered once the

request is accepted and the service

routine started.

15h EXT_INT_PRI 32 This register is used to set priorities

for external interrupt sources. Each

interrupt source is associated with a

four bit unsigned value in range from

0 to 15, 0 meaning highest priority.

Bit field PRIX is associated with

external interrupt number X. X varies

from 0 to 7.

Interrupt priorities:

Bits 31 .. 28 : INT 7 priority

Bits 27 .. 24 : INT 6 priority

...

Bits 7 .. 4 : INT 1 priority

Bits 3 .. 0 : INT 0 priority

16h COP_INT_PRI 16 This register is used to set priorities

for coprocessor interrupts/exceptions.

Each coprocessor is associated with a

four bit unsigned value in range from

0 to 15, 0 meaning highest priority.

Bit field PRIX is associated with

coprocessor number X. X varies from

0 to 3.

Bits 15 .. 12 : COP3 priority

Bits 11 .. 8 : COP2 priority

Bits 7 .. 4 : COP1 priority

Bits 3 .. 0 : COP0 priority

0 – highest priority

15– lowest priority

Priorities for external

interrupts can only be

set if external handler

is not used.

17h EXCEPTION_CS 8 This is a read-only register which is

used to report the cause of an

exception to an exception handler.

18h EXCEPTION_PC 32 This is a read-only register which is

used to report the memory address of

the instruction which caused an

exception. It can be used by

exception handler.

19h EXCEPTION_PSR 8 Contains a copy of processor status

flags (PSR) which were valid when

the instruction causing an exception

was decoded. It can be used by

exception handler.

Read only. See

exceptions.

1Ah DMEM_BOUND_LO 32 This register is used to set the lower

limit of a continuous address space

for data memory protection.

Accesses inside the area defined

together with DMEM_BOUND_HI

register are either allowed in user

mode or blocked while in user mode

(allowing accesses outside the area

only) depending on memory

protection flags in MEM_CONF

register. In super user mode the

whole address space is accessible.

The CCB block can

be protected from

user level code by

mapping it to

protected address

space. See

programming

considerations.

1Bh DMEM_BOUND_HI 32 This register is used to set the upper

limit of a continuous address space

for data memory protection.

Accesses inside the area defined

together with DMEM_BOUND_LO

register are either allowed in user

mode or blocked while in user mode

(allowing accesses outside the area

only) depending on memory

protection flags in MEM_CONF

register. In super user mode the

whole address space is accessible.

1Ch IMEM_BOUND_LO 32 This register is used to set the lower

limit of a continuous address space

for instruction memory protection.

Fetching instructions from addresses

inside the area defined together with

IMEM_BOUND_HI register are

either allowed in user mode or

blocked while in user mode

(allowing accesses outside the area

only) depending on memory

protection flags in MEM_CONF

register. In super user mode the

whole address space is accessible

1Dh IMEM_BOUND_HI 32 This register is used to set the upper

limit of a continuous address space

for instruction memory protection.

Fetching instructions from addresses

inside the area defined together with

IMEM_BOUND_LO register are

either allowed in user mode or

blocked while in user mode

(allowing accesses outside the area

only) depending on memory

protection flags in MEM_CONF

register. In super user mode the

whole address space is accessible.

1Eh MEM_CONF 2 This register contains flags which

control the protection of address

spaces defined by the contents of

registers DMEM_BOUND_LO,

DMEM_BOUND_HI,

IMEM_BOUND_LO, and

IMEM_BOUND_HI. Flag in the bit

position 0 controls protection of

instruction memory and flag in the

bit position 1 controls protection of

data memory. If the respective flag is

high (’1’) the address space between

the low and high boundaries

(boundaries included) is not allowed

to be accessed in user mode. If the

flag is low (’0’) then only the address

space between the limits (boundaries

included) is allowed to be accessed in

user mode.

See programming

considerations

1Fh SYSTEM_ADDR 32 The content of this register defines

the entry address of system call

handler. When executing scall

instruction the address in this register

will be loaded to program counter.

See instruction

specifications: scall

20h EXCEP_ADDR 32 The content of this register defines

the entry address of an exception

handler. When an instruction causes

an illegal event the address in this

register will be loaded to program

counter.

See exceptions

21h BUS_CONF

12 This register is used to set the

amount of wait cycles per bus access.

Data memory, instruction memory

and coprocessor buses can be

configured separately. The number of

wait cycles can be set to a value in

range 0 to 15. Bit fields are

See COFFEE

interface

associated to different buses as

follows: CBUS_WC – coprocessor

bus, DBUS_WC – data memory bus,

IBUS_WC – instruction memory

bus. For maximum performance,

number of access cycles (start cycle

+ wait cycles) should be set to

smallest possible value. With zero

wait cycles, the memory/coprocessor

in question has to be able to respond

in shorter time than one clock cycle

(asynchronous operation).

Bit fields:

Bits 11 .. 8: CBUS_WC

Bits 7 .. 4: DBUS_WC

Bits 3 .. 0: IBUS_WC

22h COP_CONF

28 This register is used to configure the

behavior of coprocessor interface.

The coprocessor interface can

operate in COFFEE native mode or

MIPS compliant mode. The mode

can be selected for each coprocessor

separately: C3_IF – interface mode

of coprocessor 3, C2_IF – interface

mode of coprocessor 2, C1_IF –

interface mode of coprocessor 1,

C0_IF – interface mode of

coprocessor 0. Use value 0 for

COFFEE native mode and value 1

for MIPS mode.

Fields C0_IR through C3_IR specify

index of the instruction register of the

coprocessor in question. When

COFFEE core encounters a

coprocessor instruction it writes the

instruction word to coprocessor bus

and drives cop_rgi signal according

In COFFEE core

version 1.0 only

COFFEE native mode

is supported (CX_IF

fields are ignored)

to corresponding CX_IR field. A

value from 0 to 31 can be specified.

Fields are associated to coprocessors

as follows: C3_IR – coprocessor 3

instruction register, C2_IR –

coprocessor 2 instruction register,

C1_IR – coprocessor 1 instruction

register, C0_IR – coprocessor 0

instruction register.

Bit fields

Bits 27 .. 26: C3_IF

Bits 25 .. 24: C2_IF

Bits 23 .. 22: C1_IF

Bits 21 .. 20: C0_IF

Bits 19 .. 15: C3_IR

Bits 14 .. 10: C2_IR

Bits 9 .. 5 : C1_IR

Bits 4 .. 0 : C0_IR

23h TMR0_CNT 32 This register contains the current

value of the internal timer counter 0.

Can be used to set initial value to

counter 0.

24h TMR0_MAX_CNT 32 This register is used to define

maximum value for timer counter 0.

After reaching maximum value the

counter will be loaded with zero. A

value greater than defined by this

register can be written to

TMR0_CNT in which case the

counter will count to FFFFFFFFH

before starting from zero.

25h TMR1_CNT 32 This register contains the current

value of the internal timer counter 1.

It can be used to set initial value to

counter 1.

See chapter about

timers.

26h TMR1_MAX_CNT 32 This register is used to define

maximum value for timer counter 1.

After reaching maximum value the

counter will be loaded with zero. A

value greater than defined by this

register can be written to

TMR1_CNT in which case the

counter will count to FFFFFFFFH

before starting from zero

27h TMR_CONF 32 This register is used to configure

both internal timers: timer0 and

timer1. See the timer document for

explanation of bit fields in

TMR1_CONF and TMR0_CONF.

Bits 31 .. 16 : TMR1_CONF

Bits 15 .. 0: TMR0_CONF

28h RETI_ADDR 32 The address in this register will be

loaded to program counter when

executing reti instruction. When

entering an interrupt service routine

this register contains a valid return

address by default. Return to

different address can be forced by

writing the desired return address to

this register before executing reti.

Interrupts should be

disabled when writing

to this register. See

document about

interrupts.

29h RETI_PSR 8 The contents of this register will be

written to PSR register when

executing reti instruction. When

entering an interrupt service routine

this register contains PSR flags from

the interrupted context. Return with

modified flags can be forced by

writing the desired flags to this

register before executing reti.

Interrupts should be

disabled when writing

to this register. See

document about

interrupts.

2Ah RETI_CR0 3 The contents of this register will be

written to flag register C0 when

executing reti instruction. When

entering an interrupt service routine

this register contains C0 flags from

the interrupted context. Return with

modified flags can be forced by

writing the desired flags to this

register before executing reti.

Interrupts should be

disabled when writing

to this register. See

document about

interrupts.

2Bh FPU_STATUS 32 A copy of the status flags sampled

from floating point coprocessor

(Milk).

See Milk

documentation about

status flags and reset

values.

29.ffh CORE_VER_ID 32 This read-only register contains

version number of the processor core.

Reading from any of

the unused offsets

(2B...FE) returns the

version identification

number from this

register.

2 Address range ([CCB_BASE] + 100h) to [CCB_END] is used to access an external configuration block
directly. This makes it possible to connect peripherals directly to data cache bus instead of system bus.
3 Bit index and interrupt source associations:
bit source bit source bit source

0 coprocessor 0 interrupt
(exception)

4 ext interrupt 0 8 ext interrupt 4

1 coprocessor 1 interrupt
(exception)

5 ext interrupt 1 9 ext interrupt 5

2 coprocessor 2 interrupt
(exception)

6 ext interrupt 2 10 ext interrupt 6

3 coprocessor 3 interrupt
(exception)

7 ext interrupt 3 11 ext interrupt 7

4 Memory protection can be dynamically configured which is convenient in multitasking system. Most
secure way is to set the limits always when switching task and to allow one task to access only address
space reserved for it (data and instruction memory). If different tasks share global data(dangerous!) address
spaces can overlap. In most cases communication between tasks should follow schemes offered by
operating system. In simple systems only vital part of the the memory might be protected and the rest of the
memory is ‘free’ to everyone. In both cases it is recommended that CCB is mapped to protected area!

2.7. Register usage of a privileged user
When processor starts executing instructions after boot (see interface document)

following conditions are assumed: 32 bit instruction word length, super user mode,

register set SET2 for reading and writing and all interrupts (also cop exceptions) disabled.

Boot code has the responsibility to initialize the special purpose registers to guarantee

proper handling of interrupts and coprocessor exceptions. User mode can be entered by

issuing the command retu (see ‘instruction definitions’ for details). Before passing the

control, registers SPSR and PR31 must be set appropriately. Execution of retu instruction

causes PSR to be overwritten by SPSR (not all flags though) and PC (program counter)

overwritten by PR31. That is, execution will start at address saved to PR31 and with

status flags saved in SPSR.

When an application program issues the command scall (requesting some system/kernel

service, for example) SPSR is overwritten with PSR and PR31 is overwritten with link

address (an address to return when resuming application code). In practice this means that

super user is able to see the state in which the user was before calling system code and is

able to resume execution from the correct address. Also the super user has full control

over the user and the possibility to read and alter the status bits of the user.

An application program can pass parameters to privileged software (and the other way

around) in some general purpose registers RXX, since privileged software can read and

write both sets of registers with the help of chrs command. For more information about

instructions scall, retu and chrs see ‘instruction definitions’.

2.8. Register limitations in 16 bit mode
In 16 bit mode only the last eight registers from both sets are available, that is registers

R24...R31 from set 1 and PR24...PR31 from set 2. Registers are mapped so that referring

to register R0/PR0 in 16 bit mode means referring to register R24/PR24 in 32 bit mode

and in general referring to Rx/PRx in 16 bit mode means referring to R(x+24)/PR(x+24)

in 32 bit mode where x is an integer in the range 0...7. Of course, assembler should

provide straight forward notion to access registers.

Condition registers C1...C7 are disabled in 16 bit mode. Register C0 is always used

(automatically selected) with conditional branches and arithmetic.

2.9. Register values after reset
PSR start value is 0000 1110b. SPSR is set to 0000 0009h. The other registers in RF and

CR are set to zero upon reset.
RESERVED IE IL RSWR RSRD UM

7...5 4 3 2 1 0

CCB (internal) register values after reset

Mnemonic Reset Value Notes
CCB_BASE 0001 0000h 64KB offset from the ‘start’. Depending

on the actual memory implementation,
data and instruction cache may or may not
point to the same physical memory.

PCB_BASE 0001 0100h
PCB_END 0001 01FFh

PCB_AMASK 0000 00FFh Must be set if an external configuration
block is present.

COP0_INT_VEC 0000 0001h
COP1_INT_VEC 0000 0001h
COP2_INT_VEC 0000 0001h
COP3_INT_VEC 0000 0001h
EXT_INT0_VEC 0000 0001h
EXT_INT1_VEC 0000 0001h
EXT_INT2_VEC 0000 0001h
EXT_INT3_VEC 0000 0001h
EXT_INT4_VEC 0000 0001h
EXT_INT5_VEC 0000 0001h
EXT_INT6_VEC 0000 0001h
EXT_INT7_VEC 0000 0001h
INT_MODE_IL FFFh 32 bit mode for all routines

INT_MODE_UM FFFh Super user mode for all routines
INT_MASK 000h All interrupts disabled
INT_SERV 000h
INT_PEND 000h

EXT_INT_PRI 0000 0000h
COP_INT_PRI 0000h

EXCEPTION_CS 00h
EXCEPTION_PC 0000 0000h

EXCEPTION_PSR 00h
DMEM_BOUND_LO 0000 0000h
DMEM_BOUND_HI FFFF FFFFh
IMEM_BOUND_LO 0000 0000h
IMEM_BOUND_HI FFFF FFFFh

MEM_CONF 3h

All the address space reserved for super
user. Cannot run in user mode before
configuring these register appropriately.

SYSTEM_ADDR 00000000h

EXCEP_ADDR 00000000h
BUS_CONF FFFh
COP_CONF 000 0000h

TMR0_CNT 0000 0000h
TMR0_MAX_CNT 0000 0000h
TMR1_CNT 0000 0000h
TMR1_MAX_CNT 0000 0000h
TMR_CONF 0000 0000h
RETI_ADDR 0000 0001h
RETI_PSR 09h
RETI_CR0 0h
FPU_STATUS -
CORE_VER_ID Version dependent

3. Timers
COFFEE core has two independent built-in timers. Both timers are 32 bit wide and both

have separate 8 bit divisor. Timers can be configured as watchdog timers or timer tick

generators for system. Timer registers are accessible via CCB (core configuration block)

and can be configured using load and store instructions.

3.1. Timer registers
Table 3.1 Timer configuration and control registers

Register mnemonic Bit field
mnemonic

Bits Explanation

TMR0_CNT [31:0] Current value of the timer0 counter.
Can be set to arbitrary value.

TMR0_MAX_CNT [31:0] The maximum value of timer0 counter.
Depending on CONT –bit, the timer
will stop at maximum value or restart
from zero. Note that, you can set a
value greater than maximum count in
TMR0_CNT –register in which case
the timer counter will count to 0xffffffff
and start over from zero.

TMR1_CNT [31:0] Current value of the timer1 counter.
Can be set to arbitrary value.

TMR1_MAX_CNT [31:0] The maximum value of timer1 counter.
Depending on CONT –bit, the timer
will stop at maximum value or restart
from zero. Note that, you can set a
value greater than maximum count in

Table 3.2 Bit fields of configuration registers TMR1_CONF and TMR0_CONF

Bit
field

bits explanation

EN 31/15 EN = 1 enables timer. A timer can be stopped at any
moment by writing EN = 0. Clearing EN bit will zero
timer divider => timer will be incremented [DIV] + 1
clock cycles after enabling it.

CONT 30/14 CONT = 1: Continuous mode. Timer counter will start
from zero after reaching maximum count defined in
TMRx_MAX_CNT –register.
CONT = 0: Timer counter will stop at maximum count.

GINT 29/13 GINT = 1: Generate an interrupt when maximum count
is reached.
GINT = 0: Do not generate interrupts.

WDOG 28/12 WDOG = 1: Enable watchdog function. If the timer
reaches maximum count defined in TMRx_MAX_CNT
the core will be reset.

- 27/11 Reserved, 0 or 1 can be written.
INTN [26:24]/[10:8] Bit field defining which interrupt to associate the timer

with: “000” => EXT_INT0 ... “111” => EXT_INT7
DIV [23:16]/ [7:0] Divider value which defines how many clock cycles

corresponds to one timer cycle: A timer counter will be
incremented every [DIV] + 1 cycles, that is a zero value
in DIV field sets the timer frequency to be the same as
clock frequency of the core.

Note: The timer divider is useful when clock frequency is reduced in order to save power. Only the DIV
field has to be touched in order to maintain timing.

4. Processor Operating Modes

4.1. 16 bit mode and 32 bit decoding modes
16 bit mode refers to length of the instruction word. When in this mode, core expects to

get instruction words encoded in 16 bits. Mode can be switched on the fly using swm

TMR1_CNT –register in which case
the timer counter will count to 0xffffffff
and start over from zero.

TMR1_CONF [31:16
]

Configuration bits for timer1. See table
2 for bit field definitions.

TMR_CONF

TMR0_CONF [15:0] Configuration bits for timer0. See table
2 for bit field definitions.

instruction. Of course when running actual code, the encoding really has to change after

swm instruction (See document instruction execution cycle times).

4.2. Limitations in 16 bit mode
• Only 8 registers per set available: registers 24...31 mapped as registers 0...7

• Conditional execution is not available

• Only one condition register (CR0) in use

• Immediate constants are shorter, see instruction specifications.

• Instructions lui, lli, exbfi and cop not available (available as pseudo –operations if

supported by assembler).

• 2nd source register and destination register shared.

4.3. Super user mode
The core can operate in super user mode or user mode. In super user mode, core can

access the whole memory space and both register banks. In user mode, access to

protected memory areas (software configurable) is denied and only 1st register bank is

accessible. It’s possible to switch from super user mode to user mode but not vice versa,

except using scall instruction which transfers execution to system code. System code

entry address must be configured in startup code. Interrupt service routines can be run in

both modes. This can also be configured by startup code. Core boots in super user mode,

which makes possible to do the necessary configurations before starting application in

user mode.

4.4. Resetting the processor
After powering up the core, rst_x pin should be pulsed low (clock has to be stable) to set

the core in correct state. If boot address selection is enabled (boot_sel pin pulled high),

boot address should be driven to data bus simultaneously with rst_x signal. If boot

address selection is disabled, core will boot at address 0x00000000h. Normal operation

will start two clock cycles after the rising edge of the rst_x signal. See document

COFFEE interface about signal timing at reset.

Defaults after reset and boot procedure

Core will boot in super user and 32 bit modes. Interrupts are disabled. A typical boot

procedure would be to execute assembly written boot code which sets all CCB registers

to suitable values and switches to user mode by executing retu instruction. See instruction

specifications. See register section about reset values of configuration registers.

4.5. Configuring the processor
Several features of the core can be configured via the core configuration block (CCB)

which is a memory mapped register bank. When writing a new value to a configuration

register, the new value will be valid when the instruction accessing CCB is in stage 5 of

the pipeline. It follows that, if some configurations affect the execution of some

instructions, or some configurations should be valid, when executing certain instructions,

one has to make sure that there are enough instructions between the ones accessing CCB

and dependent instructions. These can be nop instructions or other instructions which do

not depend on values of the configuration registers. Table below shows few examples of

situations where it is essential to have few instructions between a CCB write and an

instruction depending on the configuration made. If you are not sure about the number of

‘guard’ instructions, use four.

instruction Purpose notes Dependency
st R1, R0, 0h Remapping CCB to new

address.
Assume that R0 contains
the address of the
CCB_BASE register and
R1 contains a new
address for CCB.

addi R0, R1, 1h It increments the new
address of CCB. R0
should point now to
CCB_END.

‘guard’ instruction

st R2, R0, 0h It configures the size of
configuration block
itself (internal +
external blocks)

Assuming R2 contains an
address to be written to
CCB_END.

The 2nd store instruction
needs the value of
CCB_BASE in stage 3 of
the pipeline. CCB_BASE
is valid when the 1st store
instruction is in stage 5 of
the pipeline => There
needs to be one
instruction between the
stores. In this case it is
addi instruction.

st R1, R0, 0h Set an interrupt vector. Assume R0 contains
address of
EXT_INT0_VEC and R1
points to interrupt service
routine.

nop idle instructions Could use some other

Interrupt vector will be
valid when store
instruction has proceeded
to stage 5 of the pipeline.
Interrupts will be enabled
when ei instruction
reaches stage 2 of the

nop (‘guard’ instructions) ‘useful’ instructions

ei Enable interrupts

pipeline. Need to fill
stages 3 and 4 to be safe.

st R1, R0, 0h Configure register
translation for
coprocessor access.

Assume R0 contains
address of
CREG_INDX_I and R1
valid configuration.

nop

nop

idle instructions
(‘guard’ instructions)

Could use some other
‘useful’ instructions

cop sqr(R2, R15) Transfer an instruction
word to coprocessor for
execution

Configuration will be
valid when store
instruction has proceeded
to stage 5 of the pipeline.
Configuration is needed
when cop instruction
reaches stage 2 of the
pipeline. Need to fill
stages 3 and 4 to be safe.

5. Interrupts and exceptions

5.1. Interrupts
COFFEE core currently supports connecting eight external interrupt sources directly. If

coprocessors are not connected the four inputs reserved for coprocessor exception signals

can be used as interrupt request lines giving possibility to connect twelve sources. An

external interrupt handler can be connected to expand the number of sources even further.

If internal interrupt handler is used, the priorities between sources can be set by software

with external handler priorities fixed according to table below. Note that priorities for

coprocessor exceptions/interrupts are always set by software.

Internal exception handler has synchronization circuitry allowing signals to be directly

connected to the core. If an external handler is used, synchronization is bypassed in order

to reduce signaling latency. See interface section.

Status signals are provided to give feedback about the status of the latest interrupt

request. Interrupt sources can be masked individually, and disabled (or enabled) at once

using di (or ei) instructions.

All interrupts are vectored. The address of an interrupt service routine can be the

corresponding vector directly (see interrupt registers) or a combination of the vector and

an offset given externally.

Priority Name
coprocessor number 0 exception/interrupt

coprocessor number 1 exception/interrupt

coprocessor number 2 exception/interrupt
software controlled

coprocessor number 3 exception/interrupt

15 external interrupt 0

15 external interrupt 1

15 external interrupt 2

15 external interrupt 3

15 external interrupt 4

15 external interrupt 5

15 external interrupt 6

15 external interrupt 7
Table 5.1 Interrupt priorities if external handler is used, 0 - highest

Interrupt interface modes
Two interfacing modes are supported: external handler and internal handler. The mode

is selected by EXT_HANDLER signal. A summary is given in the table below. Note that

an external handler usually allows priorities between sources to be set quite freely. In this

case an external handler sees a fixed priority between the lines it is driving. The user may

see whatever configuration.

Table 5.2 Interrupt interface modes

Mode/
EXT_HANDLER state

Request signal
timing

Interrupt vector
calculation

Priorities

internal handler / LOW asynchronous BASE address directly 1 set by software (see
configuration registers)

external handler / HIGH synchronous BASE(31 .. 12) & OFFSET
& “0000” 2

fixed between lines
(usually configurable
via external handler)

1 BASE address is set by software. See CCB configuration registers.

2 The 8 bit OFFSET provided by an external handler, & means concatenation. Coprocessor
exceptions/interrupts do not use OFFSET.

Signaling an interrupt
An interrupt request is signaled by driving a high pulse on one of the interrupt lines. The

timing of the pulse depends on the mode: whether an external handler is used or not. The

timing of the coprocessor interrupt/exception lines is fixed. See interface section about

the timing details. Each interrupt line has a pulse detection circuitry and an interrupt

request gets through when that circuitry sees a pulse, that is, after seeing a falling edge. If

an external handler is used, the offset should be driven simultaneously with the request

line.

Once detected, a request is saved in a register called INT_PEND, which is visible to the

software. After this it has to go through the priority resolving and masking stage. The

following conditions have to be true for a pending request to get through:

• Interrupts enabled: IE bit in processor status register (PSR) must be high.

• Interrupt mask register has to have a high bit (‘1’) in the corresponding position.

• No interrupts with higher priority are pending or in service.

• No exceptions on pipeline (see document about exceptions)

Once a request gets through, the processor starts execution of an interrupt service routine

as soon as possible: pipeline is executed to a point where it is safe to switch to interrupt

service routine. This takes 1 – 3 cycles depending on the contents of the pipeline. When a

service routine is started the corresponding bit in the INT_SERV register is set. At the

same time, the processor drives a pulse to INT_ACK output in order to signal to an

external handler that the latest request got through and is now in service. This is the

earliest point where a new request from the same source can be accepted.

The latency from asserting an external interrupt signal to the moment when control of the

core detects the signal is multiple cycles. The latency also depends on the mode of

operation of the interrupt interface. Latency is calculated from the falling edge of the

EXT_INTERRUPT signal. Different cases are shown in the table below.

Table 5.3 Interrupt signals latency
Interface type signal

synchronization
pulse detection priority

check
and
masking

total cycles

asynchronous
(EXT_HANDL
ER low)

2 clock cycles 1 clock cycle 4

synchronous
(EXT_HANDL
ER high)

-

1 clock cycle or
less depending
on timing of the
EXT_INTERRU
PT –signal.

1 clock cycle 2

Priority resolving
A priority for a particular source is set by writing a four bit value in a field reserved for

that source in the EXT_INT_PRI or COP_INT_PRI –register. Priority can have any value

between 0 and 15, zero being the highest priority.

Whether the priority is fixed (external handler used) or set by software, priority resolving

works the same way. If multiple interrupts are signaled simultaneously, the one with the

highest priority (lowest number) will be served first. Note that for coprocessor

exceptions/interrupts the priority can always be set by software.

If multiple sources have the same priority, resolving is performed internally in the

following order (COP0_INT having the highest priority):

COP0_INT, COP1_INT, COP2_INT, COP3_INT,

EXT_INT0, EXT_INT1, EXT_INT2, EXT_INT3,

EXT_INT4, EXT_INT5, EXT_INT6, EXT_INT7.

If the same interrupt that is currently in service, is signaled, the interrupt service routine

is restarted as soon as it has finished (of course assuming there’s no interrupt requests

with higher priority pending). A request with higher priority can interrupt the current

service routine if interrupts have been re-enabled with ei instruction (nesting of

interrupts).

Switching to an interrupt service routine
The following steps are taken when switching to an interrupt service routine:

• return address is saved to hardware stack (a special logic structure to allow fast

switching)

• processor status register (PSR) is saved to hardware stack

• condition register CR0 is saved to hardware stack

• The start address of an interrupt service routine is calculated(see table 2) and

placed to program counter

• Signal INT_ACK is pulsed (except with coprocessor exceptions/interrupts!)

• The bit corresponding to the interrupt source is set high in INT_SERV –register.

• The bit corresponding to the interrupt source is cleared from INT_PEND –

register.

• Further interrupts are disabled by setting IE bit low in PSR

• Processor status: user mode and, instruction decoding are set according to control

registers INT_MODE_IL and INT_MODE_UM. (If super user mode is set,

register set 2 is selected as default for reading and writing)

• Execution of the interrupt service routine in question is started.

Returning from an interrupt service routine
An interrupt service routine has to execute a reti instruction in order to resume program

execution where it was interrupted. This causes the following things to happen:

• Processor status is restored from the hardware stack

• CR0 is restored from the hardware stack

• Program counter is restored from the hardware stack

• Signal INT_DONE is pulsed (except with coprocessor exceptions/interrupts!)

• The INT_SERV bit is cleared.

• Interrupts are enabled if they were enabled before entering the service routine.

(There is a possibility that di instruction is executed just before entering the

service routine, but after a request got through in which case the interrupt is

served but interrupts will be disabled on return)

Internal interrupt handler control & status registers
Bit positions and interrupt sources are associated as follows:
(INT_MODE_IL, INT_MODE_UM, INT_MASK, INT_SERV, INT_PEND)
Bit 11 – EXT_INT7, Bit 10 – EXT_INT6,..., Bit 4 – EXT_INT0, Bit 3 – COP3_INT,..., Bit 0 – COP0_INT

Table 5.4 Internal interrupt handler registers (in CCB)

Offset Mnemonic Width Description Notes
02h COP0_INT_VEC 32 Co-processor 0 interrupt service routine start

address
03h COP1_INT_VEC 32 Co-processor 1 interrupt service routine start

address
04h COP2_INT_VEC 32 Co-processor 2 interrupt service routine start

address
05h COP3_INT_VEC 32 Co-processor 3 interrupt service routine start

address
06h EXT_INT0_VEC 32 External interrupt 0 service routine base address.
07h EXT_INT1_VEC 32 External interrupt 1 service routine base address.
08h EXT_INT2_VEC 32 External interrupt 2 service routine base address.
09h EXT_INT3_VEC 32 External interrupt 3 service routine base address.
0ah EXT_INT4_VEC 32 External interrupt 4 service routine base address.
0bh EXT_INT5_VEC 32 External interrupt 5 service routine base address.
0ch EXT_INT6_VEC 32 External interrupt 6 service routine base address.
0dh EXT_INT7_VEC 32 External interrupt 7 service routine base address.

It should be
properly
aligned.

0eh INT_MODE_IL 12 Instruction decoding mode flags for interrupt
routines.

0fh INT_MODE_UM 12 User mode flags for interrupt routines.

See registers –
document: PSR

10h INT_MASK 12 Register for masking external and cop interrupts
individually. A low bit (‘0’) means blocking an
interrupt source; a high bit enables an interrupt.

11h INT_SERV 12 Interrupt service status bits (active high).
12h INT_PEND 12 Pending interrupt requests (active high).

Read only. See
chapter Tricks.

13h EXT_INT_PRI 32 Bits 31 .. 28 : INT 7 priority
Bits 27 .. 24 : INT 6 priority

...
Bits 7 .. 4 : INT 1 priority
Bits 3 .. 0 : INT 0 priority

14h COP_INT_PRI 16 Bits 15 .. 12 : COP3 priority
Bits 11 .. 8 : COP2 priority
Bits 7 .. 4 : COP1 priority
Bits 3 .. 0 : COP0 priority

0 – highest
priority
15 – lowest
priority
Priorities for
external
interrupts can
only be set if
internal
handler is used.

Notes
• di instruction itself can be interrupted! It is guaranteed that instructions between

di, ei pair cannot be interrupted but an interrupt can take place between di and the

following instruction.

• Clearing a pending interrupt without running the service routine; this thing

concern only clearing a pending request from the internal handler register! The

ability to clear bits in the INT_PEND register directly would lead to situations

where an external interrupt handler would not know the real status of the latest

interrupt request because INT_ACK -signal would never go high for these

‘canceled’ interrupts. This kind of inconsistency is not acceptable and that’s why

INT_PEND is a read only register.

If there is a need to ‘cancel’ a request it can be done as follows (If internal CCB is

mapped to protected memory area, super user mode is needed):

• Interrupts should be disabled during these operations!

• Save the current value in the interrupt vector register of the int source in question.

• Replace the old vector with a new one which points to a dummy routine

(remember OFFSET, if external handler is present) which executes reti –

instruction only (and maybe some acknowledge instructions for external handler).

• Set the interrupt source to highest priority and make sure that no other source

shares the same priority (of course save old values).

• Set mask bit for the interrupt source in question (save old value of INT_MASK)

• enable interrupts

• Check the INT_PEND register and disable interrupts when the bit in question is

low.

• Restore vector and priorities.

• Continue normally

Do not do this!
Do not change interrupt priorities while in interrupt service routine if you use nested

interrupts (unless you are sure that a new request from a source cannot arise before a

service routine is finished). In extreme cases this can lead to hardware stack overflow if

interrupt nesting level is twelve and priorities are changed so that multiple requests from

a single source can be active simultaneously. Normally an interrupt service routine

cannot be interrupted by a new request from the same source because of priority

resolving.

5.2. Exceptions
In this document an exception means an event which will halt the processing of the

current thread immediately and causes the core to switch to an exception handling

routine. An exception is considered an error condition and has to be dealt with

immediately. Note that very often in literature exception means interrupting the processor

in general. See also interrupts section.

Table 5.5 Exception types and codes.

Priority Code Name Description
10 00000000 instruction address

violation3
While in user mode, instruction is fetched from memory address
not allowed for user.

6 00000001 unknown opcode Version 1.0 of COFFEE RISC does not have any unused opcodes
which makes this obsolete.

7 00000010 Illegal instruction While in 16 bit mode, trying to execute an instruction which is
valid only in 32 bit mode or trying to execute a super user only
instruction in user mode.

3 00000011 miss aligned jump
address 4

Calculated jump target is not aligned to word (32 bit mode) or
halfword(16 bit mode) boundary.

2 00000100 jump address
overflow

A PC relative jump below the bottom of the memory or above the
top of the memory.

9 00000101 miss aligned
instruction address1

Instruction address is not aligned according to mode. This can be
caused by:

- External boot address was not aligned to word boundary
- An interrupt vector is not properly aligned or interrupt

mode is not correctly set
- Exception handler entry address is not aligned to word

boundary (this will lock the core by causing an eternal
loop!)

- System entry address is not aligned to word boundary
8 111xxxxx trap 2 processor encountered a trap instruction
5 00000110 arithmetic overflow The result of a signed arithmetic operation exceeds 231-1 or falls

below -231.
0 00000111 data address

violation
While in user mode, a data address refers to memory address not
allowed for user.

1 00001000 data address
overflow

Trying to index data below of the bottom or above of the top of
the memory

4 00001001 Illegal jump Trying to jump to protected instruction memory area while in user
-mode.

x 00001010
...
00011111

 Reserved for future extensions

Notes
1 In this case, the address is saved, since it cannot be known which instruction(if any) caused the exception.
2 For software exceptions (such as division by zero, or array bounds exceeded)
Exception address will point to trap –instruction. Note, that you cannot generate hardware exceptions using
trap instruction because trap code will be padded with ones.
3 If sequential execution traverses the boundary of the protected instruction memory area, the address of the
instruction pointed to is saved.
4 A jump between memory areas using different encoding will result in unpredictable behavior.

Handling an exception
In case of an exception, core performs following tasks:

• Saves the address of the instruction causing the exception (or just an address, see

table on previous page) to CCB register EXCEPTION_PC.

• Saves to CCB register EXCEPTION_PSR processor status flags which were used

when the violating instruction was decoded.

• Saves the exception code (see table above) to CCB register EXCEPTION_CS.

• Disables interrupts.

• Switches to 32 bit decoding mode and super user mode with register set 2 as

default for reading and writing.

• Starts execution from a handler routine pointed by the CCB register

EXCEP_ADDR.

Following things are guaranteed by hardware:

• The violating instruction is not able to modify the state of the processor (registers,

status flags, data memory).

• All instructions before the violating one (in the order of execution) are executed.

• None of the instruction following the violating one are executed (pipeline is

flushed up to the violating instruction).

• If multiple instructions on pipeline cause an exception simultaneously, the one

which is first in the order of execution is taken into account.

• Interrupt requests cannot get through if an exception is signaled.

• An exception handler routine will always see updated values of

EXCEPTION_XX registers immediately.

Returning from the exception handler
Depending on the handler, execution can be resumed from a different context or from the

same context or it might not be resumed at all. In any case, appropriate flags should be

written to SPSR (see registers) and the resume address should be written to PR31 (the

link register). Then, executing retu instruction will update the PSR with flags written to

SPSR and load the program counter with the value in PR31 causing the processor to start

executing instructions from the desired memory location in the desired mode.

Notes
• Remember to initialize EXCEP_ADDR register appropriately in boot code.

Incorrect address may cause eternal loop which will lock the processor until it is

reset.

• Even though the violating instruction cannot change the contents of the memory,

the address it refers to may appear on address bus.

• Interrupts are disabled when entering the handler routine but can be enabled by

software (care must be taken).

• If the exception is caused by an interrupt service routine (see interrupts) and the

routine is disabled permanently, you should pop the return address of that routine

from the hardware stack to ensure correct operation of other interrupt routines.

This is explained in the document interrupts.

• Exceptions are an inefficient way to interface super user mode. Use scall

instruction instead of trap instruction where appropriate.

5.3. Handling exceptions and interrupts
This document describes what happens on pipeline in case of an exception or interrupt or

a combination of these.

Definitions

An interrupt
An external/internal device requests CPU time. This is the normal way to interrupt the

processor in a multitasking system. Interrupt request can originate for example from a

timer or an external IO –device, coprocessor etc.

An exception
An instruction causes a violation. An exception is considered to be abnormal condition.

Software originated exceptions can be synthesized using trap –instruction.

General philosophy
From the hardware point of view, exceptions require immediate attention and actions

cannot be delayed even one clock cycle. This is because hardware has to make sure that

the instruction causing the exception does not modify the state of the processor: flags,

register or memory contents. If it does, it will most probably cause following instructions

to fail also.

From software point of view, the processing of an exception in one thread can be delayed

if some other thread currently needs CPU time. It is enough to halt the thread where the

exception occurred and invoke a handler routine whenever the execution of the violating

thread should continue. Information about exception is passed to the handler.

From software point of view, interrupts should be serviced immediately. Especially

systems which have strict real time requirements do not allow servicing to be delayed too

much. Anyway ‘immediately’ has a slightly different meaning for software than for

hardware: Typically switching to an interrupt routine means executing many instructions

before the actual processing of the interrupt event (anything up to hundreds of

instructions). In hardware, switching takes typically less than five clock cycles!

From hardware point of view, interrupts are not an error condition and as such do not

require immediate attention if something with higher priority is processed. In all cases

COFFEE core will pass control to an interrupt service routine as soon as possible. In

practice the interrupt response time will be predictable. In fact response will be delayed

only in these cases: cache miss causes stall cycles, interrupts are disabled by software, an

interrupt with a higher priority is in service or an exception occurs simultaneously with

detecting an interrupt request or during a context switch.

Processing of interrupts

Signaling an interrupt
The latency from asserting an external interrupt signal to the moment when control of the

core detects the signal is multiple cycles. The latency also depends on the mode of

operation of the interrupt interface. Latency is calculated from the falling edge of the

EXT_INTERRUPT signal. Latency from signaling to context switch in different cases is

shown in the table below. After edge detection stage, the request is saved in PEND

register for further processing. If interrupts are disabled, a request will be pending until

interrupts are again enabled. As soon as the core acknowledges the pending request it will

be visible in the SERV –register after which a new request from the same source can be

accepted.

Table 5.6, Interrupt signaling latency
mode signal

synchronization
edge detection priority

check
and
masking

total cycles

asynchronous
(EXT_HANDL
ER low)

2 clock cycles 1 clock cycle 4

synchronous
(EXT_HANDL
ER high)

-

1 clock cycle or
less depending
on timing of the
EXT_INTERRU
PT –signal.

1 clock cycle 2

Deciding return address

Table 5.7, deciding the return address

case explanation return address/source notes

0 One of the following

instructions in stage 1:

Calculated jump target address if the

branch is taken or the address of the

All of the listed

instructions cause

bc, bnc, begt, belt, beq,

bgt, blt, bne, jal, jalr,

jmp, jmpr, retu or scall.

instruction following branch slot

instruction if branch is not taken.

execution to branch

somewhere. Slot

instruction is

executed.

1 swm -instruction in stage

1 or 2

Address of the instruction following

the two required nop –instructions.

There has to be two

nop instructions after

a swm.

2 mulu, muli, muls or

mulus in stage 1

Address instruction itself. One of these and a

following mulhi –

instruction is atomic.

=> Cannot be

executed separately.

3 reti –instruction in stage
1, 2 or 3

Address on top of the hardware stack. In practise this means
that, an interrupt
service routine is
interrupted by a higher
priority request
(nested interrupts)

4 All other cases Address of the instruction being
fetched that is the current PC value.

Notes:

• The return address will be written to PC before saving it to hardware stack, which

means that it will be visible to the instruction cache even though the instruction

pointed to is not executed. The only exception to this is case 3 in the above table:

If the needed return address is already on top of the stack, it is not popped to PC.

• If an exception happens during context switching, it takes priority and the

interrupt request is left pending.

Switching to an interrupt routine

Switching to an interrupt service routine takes multiple clock cycles. The number of

clock cycles depends on the contents of the pipeline and possible stalls caused by cache

memory misses or data dependencies.

The total amount of cycles from the falling edge of the EXT_INTERRUPT/COP_EXC –

signal to the moment when the address of the first instruction of an interrupt service

routine is on the I_ADDR –bus is from 3 to n cycles. N depends on pipeline stalls and

contents and the interrupt status of the processor.

Before switching to an interrupt service routine, instructions already on pipeline are

executed to ‘safe’ state. See Table 8, Instructions and their safe states in document

‘Instruction execution cycle times’.

Figure below illustrates context switching logic for both exceptions and interrupts.

prepare to:
-- save the address of the violating instruction
-- save the status flags of the violating istruction
-- flush pipeline up to the violating instruction
-- write address of the handler routine to PC
disable fetch stage(insert nops)

disable fetch
(insert nops)
freeze PC

- disable fetch
 (insert nops)
- source PC from
 PC_PSR_BUFF
 address 1
- flush stage 1

execute one cycle

exception ?

T

prepare to:
-- push return address to HW
stack-- push status flags(+CR0) to HW
stack-- Update PC with interrupt vector
-- drive int_ack high

Architecture Declarations
Concurrent Statements

Process Declarations
Sensitivity List

Start

Normal execution

exception ?

execute one cycle

exception ?

exception ?

execute one cycle

pipeli n af
state?

i rr
request ?

bc, begt, belt, beq, bgt, blt,
bne, jal, jalr, jmp, jmpr,
retu or scall in stage 1

swm re n
stage 1 or 2

d10

mul mu u
or muli in stage 1

exception ?

safe to wi h ?

execute one cycle

execute one cycle

exception ?

disabl et
(insert
freeze PC

execute one cycle

prepare to:
-- update PSR with exception flags
enable fetch stage

T

F

T

T

F
F

T

F

ne i s e

nte upt

T

F

F

 or ti i

T

F

u, muls, l s T

T

F

 s tc
T

F

T

F

e f ch
 nops)

F

F

T

Figure 5.1, Interrupt & exception logic

Returning from an interrupt service routine
Safe return is guaranteed by executing reti instruction in stage 2 instead of stage 1. When

reti is in stage 2, it can be seen if preceding instructions will cause exceptions. If not,

context can be safely restored. Return address will be on memory bus when reti is in

stage 4 of the pipeline.

Processing of exceptions

Table 5.8 Exception types and codes

Priority Code Name Description
10 00000000 instruction

address
violation
3

While in user mode, instruction is fetched from
memory address not allowed for user.

6 00000001 unknown
opcode

Version 1.0 of COFFEE RISC does not have any
unused opcodes which makes this obsolete.

7 00000010 Illegal
instruction

While in 16 bit mode, trying to execute an instruction
which is valid only in 32 bit mode or trying to
execute a super user only instruction in user mode.

3 00000011 miss aligned
jump address
4

Calculated jump target is not aligned to word (32 bit
mode) or halfword(16 bit mode) boundary.

2 00000100 jump address
overflow

A PC relative jump below the bottom of the memory
or above the top of the memory.

9 00000101 miss aligned
instruction
address
1

Instruction address is not aligned according to mode.
This can be caused by:

- External boot address was not aligned to word
boundary

- An interrupt vector is not properly aligned or
interrupt mode is not correctly set

- Exception handler entry address is not aligned
to word boundary (this will lock the core by
causing an eternal loop!)

- System entry address is not aligned to word
boundary

8 111xxxxx trap 2 processor encountered a trap instruction
5 00000110 arithmetic

overflow
The result of a signed arithmetic operation exceeds
231-1 or falls below -231.

0 00000111 data address
violation

While in user mode, a data address refers to memory
address not allowed for user.

1 00001000 data address
overflow

Trying to index data below of the bottom or above of
the top of the memory

4 00001001 Illegal jump Trying to jump to protected instruction memory area
while in user -mode.

x 00001010
...
00011111

 Reserved for future extensions

Table 5.9 Exception signaling stages

name violating instruction in stage
unknown opcode 2

Illegal instruction 2
miss aligned jump address
jump address overflow
Illegal jump

3

instruction address
violation

miss aligned instruction
address

1

trap 2
arithmetic overflow 3
data address violation 4
data address overflow 4

Priorities
Priority 0 means most urgent and 10 means the lowest priority. Priorities come directly

from the order of execution. When two or more instructions cause exception in different

parts of the pipeline, the one with the highest priority is taken into account.

Switching to exception handler routine
The offending instruction and all following instructions in the pipeline (instructions

which follow the violating one in the order of execution) are flushed. The address of the

violating instruction is saved along with status flags (PSR), which were valid when

decoding the instruction. Also a cause code is saved. See CCB registers. The remaining

instructions on the pipeline (instructions which precede the violating one in order of

execution) are executed until the pipeline is in safe state, which means that no more

exceptions can take place(and processor state does not change). New instructions are not

fetched during this pipeline clean operation. If during pipeline clean another exception

occurs, the pipeline is flushed up to that instruction and exception data corresponding to

the violating instruction is saved (in EXCEPTION_CS, EXCEPTION_PC and

EXCEPTION_PSR). After this the cleaning of pipeline will continue until it’s safe to

switch to the exception handler routine.

When the pipeline is clean, PSR will be updated with default handler flags shown below

and execution from address defined in CCB register EXCEP_ADDR is started.

RESERVED IE IL RSWR RSRD UM
xxx 0 1 1 1 0

This kind of operation guarantees that an exception is always caught and instructions

which preceded the violating one are executed properly. Instructions which follow the

violating one are not executed.

Offending instructions are not able to modify the state of the processor or contents of the

memory or registers. Note that Exception data registers inside CCB (EXCEPTION_CS,

EXCEPTION_PC and EXCEPTION_PSR) will be overwritten immediately. If an

exception happens in an exception handler routine (little hope for the software to

recover!) the handler routine is restarted and the link to the original context might be lost

depending on the handler routine.

Figure 1 (previous chapter) illustrates the exception logic.

6. Instruction specifications

6.1. General Information
This document describes the machine instructions implemented in COFFEE RISC 1.

The following set of instructions is the minimum set which every assembler should

provide. With pseudo instructions the assembly language interface can be extended.

Abbreviations used
• creg : condition register index, number in the range 0...7

• cond : condition (see table 'Condition codes' at the end)

• dreg : destination register index (32 bit mode) , number in the range 0...31

• sregi, sreg : source register index (32 bit mode) , number in the range 0...31

• dr : destination register index (16 bit mode) , number in the range 0...7

• sri : source register index (16 bit mode) , number in the range 0...7

• imm, imm1, imm2 : immediate constant, see table ‘Permitted values for immediate

constants’

• cp_sreg : coprocessor source register , number in the range 0...31

• cp_dreg : coprocessor destination register , number in the range 0...31

Notes about instruction definitions
16 bit mode refers to instruction word length. Data is manipulated in 32 bit words except

with 16 bit multiplication instructions.

Syntax definition is an abstraction. The only purpose is to illustrate what an instruction

expects as input and produces as output. The Syntax of an assembly language program

written for COFFEE RISC depends on the assembler and is documented in the respective

assembler manual.

If the Syntax of an instruction is different in 16 bit mode than in 32 bit mode then both

Syntaxes are presented: First the 32 bit version and then 16 bit version separated with a

backslash. If both Syntaxes are similar (or the particular instruction is not defined in 16

bit mode) then only one is presented.

Optional parameters for conditional execution are enclosed in brackets.

Conditional execution is not allowed in 16 bit mode.

6.2. Instruction definitions

add
Syntax: (cond, creg) add dreg, sreg1, sreg2/ add dr, sr

Description: The contents of the source registers sregi are summed together and the result

is placed to the destination register dreg. Exception is generated if the result exceeds 231-

1 or falls below -231. In 16 bit mode the register dr is the second source and the

destination.

Notes: Operation is carried out using twos complement arithmetics.

Flags: Z, N, C (creg0)

addi
Syntax: (cond, creg) addi dreg, sreg1, imm/ addi dr, imm

Description: The immediate constant is sign extended and summed with the contents of

the source register sreg1. The result is placed to the destination register dreg. Exception

is generated if the result exceeds 231-1 or falls below -231. In 16 bit mode the register dr is

the first source register and the destination.

Notes: Operation is carried out using twos complement arithmetics. See the permitted

values for the immediate in the table 'Permitted values for immediate constants'.

Flags: Z, N, C (creg0)

addiu
Syntax: (cond, creg) addiu dreg, sreg1, imm/ addiu dr, imm

Description: The immediate constant is zero extended and summed with the contents of

the source register sreg1. The result is placed to the destination register dreg. Overflow is

ignored. In 16 bit mode the register dr is the first source register and the destination.

Flags: Z, N, C (creg0)

Notes: The register operand can also be ‘negative’ even though the instruction is

supposed to be ‘add with immediate, unsigned operands'. The only difference to addi is

that possible overflow condition is ignored. In general addition procedure is exactly the

same for both kinds of operands (2C or unsigned) only the result is interpreted differently

(in this case by the programmer or compiler). Flags are set as expected when using 2C

arithmetic. See the permitted values for the immediate in the table 'Permitted values for

immediate constants'.

addu
Syntax: (cond, creg) addu dreg, sreg1, sreg2/addu dr, sr

Description: The contents of the source registers sregi are summed together and the result

is placed to the destination register dreg. Overflow is ignored. In 16 bit mode the register

dr is the second source and the destination.

Flags: C, N, Z (CREG 0)

Notes: Addition wider than 32 bits can be carried out as follows: Add the lower 32 bits

with addu and add one to the upper 32 bits if carry was set in condition register creg0 as a

result of the first addition. The register operands can also be ‘negative’ even though the

instruction is supposed to be 'add, unsigned operands'. The only difference to add is that

possible overflow condition is ignored. In general addition procedure is exactly the same

for both kinds of operands (2C or unsigned) only the result is interpreted differently (in

this case by the programmer or compiler). Flags are set as expected when using 2C

arithmetic.

and
Syntax: (cond, creg) and dreg, sreg1, sreg2/and dr, sr

Description: Bitwise Boolean AND operation is performed to the contents of the source

registers sregi. The result is placed to the destination register dreg. In 16 bit mode the

register dr is the second source and the destination.

andi
Syntax: (cond, creg) andi dreg, sreg1, imm/andi dr, imm

Description: The immediate constant is zero extended. Bitwise Boolean AND operation is

performed to the extended immediate and the contents of the source register sreg1. The

result is placed to the destination register dreg. In 16 bit mode the register dr is the

register source and the destination.

Notes: See the permitted values for the immediate in the table 'Permitted values for

immediate constants'.

bc
Syntax: bc creg, imm/bc imm

Description: If the carry flag in the condition register creg is high, program execution

branches to target address specified by the immediate imm. The target address is

calculated as follows: The immediate offset imm is shifted left by one bit and sign

extended. The sign extended offset is added to the contents of the program counter PC. In

16 bit mode the condition register used is always creg0

Notes: This instruction cannot be executed conditionally. The instruction following this

instruction is always executed (branch slot). The branch offset is calculated relative to the

instruction in the slot. See the permitted values for the immediate in the table 'Permitted

values for immediate constants'.

begt
Syntax: begt creg, imm/begt imm

Description: If the flags in the condition register creg indicate that the condition eqt (equal

or greater than) is true, program execution branches to target address specified by the

immediate imm. The target address is calculated as follows: The immediate offset imm is

shifted left by one bit and sign extended. The sign extended offset is added to the

contents of the program counter PC. In 16 bit mode the condition register used is always

creg0

Notes: This instruction cannot be executed conditionally. The instruction following this

instruction is always executed (branch slot). The branch offset is calculated relative to the

instruction in the slot. See the permitted values for the immediate in the table 'Permitted

values for immediate constants'.

belt
Syntax: belt creg, imm/belt imm

Description: If the flags in the condition register creg indicate that the condition elt (equal

or less than) is true, program execution branches to target address specified by the

immediate imm. The target address is calculated as follows: The immediate offset imm is

shifted left by one bit and sign extended. The sign extended offset is added to the

contents of the program counter PC. In 16 bit mode the condition register used is always

creg0

Notes: This instruction cannot be executed conditionally. The instruction following this

instruction is always executed (branch slot). The branch offset is calculated relative to the

instruction in the slot. See the permitted values for the immediate in the table 'Permitted

values for immediate constants'.

beq
Syntax: beq creg, imm/beq imm

Description: If the flags in the condition register creg indicate that the condition eq

(equal) is true, program execution branches to target address specified by the immediate

imm. The target address is calculated as follows: The immediate offset imm is shifted left

by one bit and sign extended. The sign extended offset is added to the contents of the

program counter PC. In 16 bit mode the condition register used is always creg0

Notes: This instruction cannot be executed conditionally. The instruction following this

instrcution is always executed (branch slot). The branch offset is calculated relative to the

instruction in the slot. See the permitted values for the immediate in the table 'Permitted

values for immediate constants'.

bgt
Syntax: bgt creg, imm/bgt imm

Description: If the flags in the condition register creg indicate that the condition gt

(greater than) is true, program execution branches to target address specified by the

immediate imm. The target address is calculated as follows: The immediate offset imm is

shifted left by one bit and sign extended. The sign extended offset is added to the

contents of the program counter PC. In 16 bit mode the condition register used is allways

creg0

Notes: This instruction cannot be executed conditionally. The instruction following this

instruction is always executed (branch slot). The branch offset is calculated relative to the

instruction in the slot. See the permitted values for the immediate in the table 'Permitted

values for immediate constants'.

blt
Syntax: blt creg, imm/blt imm

Description: If the flags in the condition register creg indicate that the condition lt (less

than) is true, program execution branches to target address specified by the immediate

imm. The target address is calculated as follows: The immediate offset imm is shifted left

by one bit and sign extended. The sign extended offset is added to the contents of the

program counter PC. In 16 bit mode the condition register used is always creg0

Notes: This instruction cannot be executed conditionally. The instruction following this

instruction is always executed (branch slot). The branch offset is calculated relative to the

instruction in the slot. See the permitted values for the immediate in the table 'Permitted

values for immediate constants'.

bne
Syntax: bne creg, imm/bne imm

Description: If the flags in the condition register creg indicate that the condition ‘not

equal’ is true, program execution branches to target address specified by the immediate

imm. The target address is calculated as follows: The immediate offset imm is shifted left

by one bit and sign extended. The sign extended offset is added to the contents of the

program counter PC. In 16 bit mode the condition register used is always creg0

Notes: This instruction cannot be executed conditionally. The instruction following this

instruction is always executed (branch slot). The branch offset is calculated relative to the

instruction in the slot. See the permitted values for the immediate in the table 'Permitted

values for immediate constants'.

bnc
Syntax: bnc creg, imm/bnc imm

Description: If the carry flag in the condition register creg is low, program execution

branches to target address specified by the immediate imm. The target address is

calculated as follows: The immediate offset imm is shifted left by one bit and sign

extended. The sign extended offset is added to the contents of the program counter PC. In

16 bit mode the condition register used is always creg0

Notes: This instruction cannot be executed conditionally. The instruction following this

instruction is always executed (branch slot). The branch offset is calculated relative to the

instruction in the slot. See the permitted values for the immediate in the table 'Permitted

values for immediate constants'.

chrs
Syntax: chrs imm

Description: Specifies which register set is used for reading or writing. The source

register(s) and the destination register doesn't have to reside in the same set. The register

sets to be used are specified by the immediate imm according to the following table:

imm write read
0 (00b) set 1 (user set) set 1 (user set)

1 (01b) set 1 (user set) set 2 (super user set)

2 (10b) Set 2 (super user set) set 1 (user set)

3 (11b) Set 2 (super user set) set 2 (super user set)

Notes: When execution in the super user mode begins the default register set for reading

and writing is the super user set (set 2). When returning back to the user mode the default

register set is the user set (set 1). This command is allowed only in super user mode. An

exception is generated on an attempt to use this command in user mode. As a result, the

user cannot see the register set intended only for super user. Not allowed to be executed

conditionally.

cmp
Syntax: cmp creg, sreg1, sreg2/cmp sr1, sr2

Description: The contents of the source registers sregi/sri are compared as if they were

signed numbers. The operation is logically done by subtracting the contents of sreg2/sr2

from the contents of sreg1/sr1. Flags N, Z and C are set or cleared accordingly and saved

to the condition register creg. In 16 bit mode the condition register is always creg0.

Flags: N, Z, C

Notes: The logical subtraction sreg1- sreg2/sr1 - sr2 does not overflow, that is, the flags

are always set correctly independently of the result of the subtraction. This instruction

cannot be executed contitionally.

cmpi
Syntax: cmpi creg, sreg1, imm/cmpi sr, imm

Description: The immediate constant imm is sign extended and compared to the contents

of the source register sreg1/sr1 as if they were signed numbers. The operation is logically

done by subtracting the immediate imm from the contents of sreg1/sr1. Flags N, Z and C

are set or cleared accordingly and saved to the condition register creg. In 16 bit mode the

condition register is allways creg0.

Flags: N, Z, C

Notes: The logical subtraction sreg1- imm/sr - imm does not overflow, that is, the Flags

are always set correctly independently of the result of the subtraction. This instruction

cannot be executed conditionally. See the permitted values for the immediate in the table

'Permitted values for immediate constants'.

conb
Syntax: (cond, creg) conb dreg, sreg1, sreg2/conb dr, sr

Description: Concatenates the least significant bytes from the source registers to form a

halfword. The least significant byte from the register sreg1 becomes the most significant

byte of the halfword and the least significant byte from the register sreg2 becomes the

least significant byte of the halfword. The resulting halfword is saved to the destination

register dreg. The upper halfword of the result is filled with zeros. In 16 bit mode dr

corresponds to the second source register sreg2 (and the destination) and sr corresponds

to sreg1.

Notes: Note the different order (right to left) of operands in 16 bit version. Assembler

should provide consistent notation (this is not an assembler specification).

conh
Syntax: (cond, creg) conh dreg, sreg2, sreg1/conh dr, sr

Description: Concatenates the least signicant halfwords from the source registers to form

a word. The least significant halfword from the register sreg2 becomes the most

significant halfword of the word and the least significant halfword from the register sreg1

becomes the least significant halfword of the word. The resulting word is saved to the

destination register dreg. In 16 bit mode dr corresponds to the second source register

sreg2 (and the destination) and sr corresponds to sreg1.

cop
Syntax: cop imm1, imm2 (Coprocessor Operation)

Description: Moves the immediate imm2 (instruction word of the coprocessor in question)

to coprocessor number imm1. The immediate imm1 specifies one of four possible

coprocessors with values 0, 1, 2 or 3. The length of the imm2 is 24 bits.

Notes: Can be used only in 32 bit mode. This instruction cannot be executed

conditionally. See coprocessor interface. See core control block (CCB) registers about

register index translation.

di
Syntax: di

Description: Disables maskable interrupts.

Notes: Not permitted to be executed conditionally. An exception is generated on an

attempt to use this command in user mode. See 'Interrupts and exceptions' for definitions

and details.

ei
Syntax: ei

Description: Enables maskable interrupts.

Notes: Not permitted to be executed conditionally. An exception is generated on an

attempt to use this command in user mode. See 'Interrupts and exceptions' for definitions

and details

exb
Syntax: (cond, creg) exb dreg, sreg, imm

Description: Extracts the byte specified by the immediate imm from the source register

sreg/sr and places it to the least significant end of the destination register dreg/dr. The

upper three bytes in the destination register are cleared. The extracted byte is specified

according to the following table.
imm byte

0 byte0

1 byte1

2 byte2

3 byte3

Contents of a source register

high end low end

byte3 byte2 byte1 byte0

Notes: See table permitted values for immediates.

exbf
Syntax: (cond, creg) exbf dreg, sreg1, sreg2/exbf dr, sr

Description: Operates like exbfi, but the two immediates defining the extracted field are

combined and read from the least significant end of the source register sreg2: bits 10 .. 5

define the length of the field and bits 4 .. 0 define the LSB position. In the 16 bit mode dr

is the second source and the destination.

Notes: Examples

Suppose that the bitfield shown below should be extracted from register R0 (could be for

example a sub address field in a message frame).

Contents of R0

xxx x x x x F I E L D x x x x x x

31...15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Now the length of the bitfield is 5 = 000101 and LSB position is 6 = 00110. To extract

the bitfield we have to place a constant

000101 00110 = 000 1010 0110 = 0A6h in second source register (say R2). The

following code could be used to place the result in R3:

lli R2, 0a6h

exbf R3, R0, R2

If we assume that the length of the bitfield in question is contained in register R1 and the

lsb position is in register R2. The following code could be used to extract the bitfield to

R3:

slli R1, R1, 5 /* shift the length to bits 10 .. 5 */

or R2, R2, R1 /* combine length and position */

exbf R3, R0, R2

See also exbfi.

exbfi
Syntax: exbfi dreg, sreg1, imm1, imm2

Description: Extracts a bitfield of arbitrary length and position from the source register

sreg1 and places it to the low end of the destination register dreg. Bitfield length and

position are defined by the immediates imm1 and imm2 as follows: imm1 defines the

length of the bitfield. Immediate imm2 specifies the LSB position of the extracted bitfield

in the source register. If the extracted bitfield is shorter than 32 bits, the extra bit

positions in the destination register are filled with zeros.

Notes: Can be used only in 32 bit mode. This instruction cannot be executed

conditionally. See table permitted values for immediate.

exh

Syntax: (cond, creg) exh dreg, sreg1, imm

Description: Extracts the halfword specified by the immediate imm from the source

register sreg1/sr and places it to the least significant end of the destination register

dreg/dr. The upper halfword in the destination register is cleared. If imm = 0, then the

least significant halfword is extracted, otherwise the most significant halfword is

extracted.

jal
Syntax: jal imm

Description: Program execution branches to target address specified by the immediate

imm. The target address is calculated as follows: The immediate offset imm is shifted left

by one bit and sign extended. The sign extended offset is added to the contents of the

program counter PC. Link address is saved to register R31/SR31. The link address is the

address of the next instruction after branch slot instruction.

Notes: This instruction cannot be executed conditionally. The instruction following this

instruction is always executed (branch slot). The jump offset is calculated relative to the

instruction in the slot. See the permitted values for the immediate in the table ‘Permitted

values for immediate constants’.

jalr
Syntax: (cond, creg) jalr sreg1

Description: Program execution branches to target address specified by the contents of the

source register sreg1/sr. Link address is saved to register R31/SR31. The link address is

the address of the next instruction after branch slot instruction.

Notes: The instruction following this instruction is always executed (branch slot).

Conditional jumps (branches) which can reach the whole address space can be

synthesized by executing this instruction conditionally. Note that the address in the

source register should be aligned to word boundary if in 32 bit mode or halfword

boundary if in 16 bit mode.

jmp
Syntax: jmp imm

Description: Program execution branches to target address specified by the immediate

imm. The target address is calculated as follows: The immediate offset imm is shifted left

by one bit and sign extended. The sign extended offset is added to the contents of the

program counter PC.

Notes: This instruction cannot be executed conditionally. The instruction following this

instruction is always executed (branch slot). The jump offset is calculated relative to the

instruction in the slot. See the permitted values for the immediate in the table ‘Permitted

values for immediate constants’.

jmpr
Syntax: (cond, creg) jmpr sreg1

Description: Program execution branches to target address specified by the contents of the

source register sreg1/sr.

Notes: The instruction following this instruction is always executed (branch slot).

Conditional jumps (branches) which can reach the whole address space can be

synthesized by executing this instruction conditionally. Note that the address in the

source register should be aligned to word boundary if in 32 bit mode or halfword

boundary if in 16 bit mode.

ld
Syntax: (cond, creg) ld dreg, sreg1, imm

Description: Loads a 32 bit data word from memory to the destination register dreg/dr.

The address of the data is calculated as follows: The immediate offset imm is sign

extended and added to the contents of the source register sreg1/sr. The address is not

auto-aligned (two least significant bits of the resulting address are driven to address bus).

Notes: The result of the address calculation doesn’t have to be aligned to word boundary.

The two least significant bits can be used for example as byte index if narrower bus is

used. Also the smallest addressable unit can be 32 bit word giving 16GB address range!

See exb instruction. See the permitted values for the immediate in the table ‘Permitted

values for immediate constants’.

lli
Syntax: lli dreg, imm

Description: Loads the lower halfword of the destination register dreg with the immediate

imm. The upper half of the destination register is cleared.

Notes: Can be used only in 32 bit mode. This instruction cannot be executed

conditionally. See the permitted values for the immediate in the table Permitted values for

immediate constants.

lui
Syntax: lui dreg, imm

Description: Loads the upper halfword of the destination register dreg with the immediate

imm. The lower half of the destination register is preserved.

Notes: Can be used only in 32 bit mode. This instruction cannot be executed

conditionally. See the permitted values for the immediate in the table ‘Permitted values

for immediate constants’.

mov
Syntax: (cond, creg) mov dreg, sreg1

Description: Copies the contents of the source register sreg1/sr to the destination register

dreg/dr.

movfc
Syntax: (cond, creg) movfc imm, dreg, cp_sreg

Description: Copies the contents of one of the registers in the coprocessor number imm to

the destination register dreg/dr. The immediate imm is used to specify one of the four

possible coprocessors: 0, 1, 2 or 3. Cp_sreg is an index to the coprocessor register file.

Notes: See ‘Coprocessor Interface’.

movtc
Syntax: (cond, creg) movtc imm, cp_dreg, sreg1

Description: Copies the contents of the source register sreg1/sr to the coprocessor register

cp_dreg. The immediate imm is used to specify one of the four possible coprocessors: 0,

1, 2 or 3.

Notes: See ‘Coprocessor Interface’.

mulhi
Syntax: (cond, creg) mulhi dreg

Description: Returns the upper 32 bits of a 64 bit product based on the previous

instruction which has to be one of the instructions mulu, muls, muli or mulus.

Notes: See also mulu, muli, muls and mulus.

muli
Syntax: (cond, creg) muli dreg, sreg1, imm/muli dr, imm

Description: Multiplies the contents of the source register sreg1 with the sign extended

immediate imm and places the result to the destination register dreg. The operands are

assumed to be signed integers (2C). In 16 bit mode dr is the source and the destination

register.

Notes: See mulhi for recovering the upper 32 bits of a product longer than 32 bits. See the

permitted values for the immediate in the table ‘Permitted values for immediate

constants’.

muls
Syntax: (cond, creg) muls dreg, sreg1, sreg2/muls dr, sr

Description: Multiplies the contents of the source register sreg1 with the source register

sreg2 and places the lower 32 bits of the result to the destination register dreg. The

operands are assumed to be signed integers (2C). In 16 bit mode dr is the second source

register and the destination.

Notes: See mulhi for recovering the upper 32 bits of a product longer than 32 bits.

muls_16
Syntax: (cond, creg) muls_16 dreg, sreg1, sreg2/muls_16 dr, sr

Description: Multiplies the lower halfword of the source register sreg1 with the lower

halfword of the source register sreg2 and places the result to the destination register dreg.

The operands are assumed to be signed integers (2C). In 16 bit mode dr is the second

source register and the destination.

mulu
Syntax: (cond, creg) mulu dreg, sreg1, sreg2/mulu dr, sr

Description: Multiplies the contents of the source register sreg1 with the source register

sreg2 and places the lower 32 bits of the result to the destination register dreg. The

operands are assumed to be unsigned integers). In 16 bit mode dr is the second source

register and the destination.

Notes: See mulhi for recovering the upper 32 bits of a product longer than 32 bits.

mulu_16
Syntax: (cond, creg) mulu_16 dreg, sreg1, sreg2/mulu_16 dr, sr

Description: Multiplies the lower halfword of the source register sreg1 with the lower

halfword of the source register sreg2 and places the result to the destination register dreg.

The operands are assumed to be unsigned integers. In 16 bit mode dr is the second source

register and the destination.

mulus
Syntax: (cond, creg) mulus dreg, sreg1, sreg2/mulus dr, sr

Description: Multiplies the contents of the source register sreg1 with the source register

sreg2 and places the lower 32 bits of the result to the destination register dreg. The

operand in register sreg1 is assumed to be an unsigned integer and the operand in register

sreg2 is assumed to be a signed integer. In 16 bit mode dr is the second source register

and the destination.

Notes: See mulhi for recovering the upper 32 bits of a product longer than 32 bits.

mulus_16
Syntax: (cond, creg) mulus_16 dreg, sreg1, sreg2/mulus_16 dr, sr

Description: Multiplies the lower halfword of the source register sreg1 with the lower

halfword of the source register sreg2 and places the result to the destination register dreg.

The operand in register sreg1 is assumed to be an unsigned integer and the operand in

register sreg2 is assumed to be a signed integer. In 16 bit mode dr is the second source

register and the destination.

nop
Syntax: nop

Description: Idle command that does not alter the state of the processor.

Notes: See the list of instructions which require a succeeding nop. This instruction cannot

be executed conditionally (even if it could it wouldn’t have any effect anyway).

not
Syntax: (cond, creg) not dreg, sreg1

Description: Performs a bitwise Boolean NOT operation to the contents of the source

register sreg1/sr and places the result to the destination register dreg/dr.

or
Syntax: (cond, creg) or dreg, sreg1, sreg2/or dr, sr

Description: Performs a bitwise Boolean OR operation to the contents of the source

registers sregi and places the result to the destination register dreg. In 16 bit mode dr is

the second source and the destination register.

ori
Syntax: (cond, creg) ori dreg, sreg1, imm/ ori dr, imm

Description: Performs a bitwise Boolean OR operation to the contents of the source

register sreg1 and zero extended immediate imm. The result is placed to the destination

register dreg. In 16 bit mode dr is the source and the destination register.

Notes: See the permitted values for the immediate in the table ‘Permitted values for

immediate constants’.

rcon
Syntax: rcon sreg1

Description: Restores the contents of all the condition registers from the source register

sreg1.

Notes: This instruction is not allowed to be executed conditionally. See programming

hints.

reti
Syntax: reti

Description: Used for returning from an interrupt service routine. Loads PC, CR0 and

PSR from the hardware stack and signals to the external (and internal) interrupt handler

that the servicing of the last interrupt request was completed.

Notes: See programming hints. Not allowed to be executed conditionally. Reti instruction

has to be followed by three nops!

retu
Syntax: retu

Description: Used for returning or moving from system code/super user mode to user

mode. Execution of user code starts from a address in register PR31. Status flags are

copied from the register SPSR. (They should be set appropriately before issuing retu). It

is available only in super user mode.

Notes: See scall. See programming hints. Not allowed to be executed conditionally. The

instruction following retu always has to be a nop!

scall
Syntax: (cond, creg) scall

Description: System call transfers the processor to the superuser mode and execution of

instructions begins at address defined in register SYSTEM_ADDR. The link address is

saved in to the register PR31(link register of SET2). The link address is the address of the

instruction following nop (see notes below). The state of the processor before scall is

copied to the register SPSR.

 Notes: When transferring the control to super user code the default settings are 32 bit

mode, interrupts disabled and super user register set (both read and write). As with

branches and jumps also this instruction has a branch slot which in this case has to be

filled with a nop instruction. See retu.

scon
Syntax: scon dreg

Description: Saves the contents of all the condition registers to the (low end of)

destination register dreg.

Notes: This instruction is not allowed to be executed conditionally. See programming

hints.

sext
Syntax: (cond, creg) sext dreg, sreg1, sreg2/sext dr, sr

Description: Works as sexti, but the position of the sign bit is evaluated using the five

least significant bits from the source register sreg2. In 16 bit mode dr is the second source

register and the destination.

Notes: See also sexti.

sexti
Syntax: (cond, creg) sexti dreg, sreg, imm/sexti dr, imm

Description: Sign extends the operand in the source register sreg and places the result to

the destination register dreg. The position of the sign bit is specified by the immediate

imm (0 corresponds to LSB and 31 corresponds to MSB). In 16 bit mode dr is the source

register and the destination.

Notes: See the permitted values for the immediate in the table ‘Permitted values for

immediate constants’.

sll
Syntax: (cond, creg) sll dreg, sreg1, sreg2/sll dr sr

Description: Performs the logical shift left to the contents of the source register sreg1/sr

and places the result to the destination register dreg/dr. The six least significant bits in the

source register sreg2 specify the amount of shift. The last ‘dropped’ bit (bit 32) is saved

as carry flag in register creg0. In 16 bit mode dr is the second source register and the

destination.

Flags: C, N, Z

Notes: If the unsigned integer formed by the six least significant bits in the source

register sreg2 implies a shift of more than 32 positions then the result will be a shift of 32

positions (which is zero).

slli
Syntax: (cond, creg) slli dreg, sreg1, imm/slli dr, imm

Description: Performs the logical shift left to the contents of the source register sreg1 and

places the result to the destination register dreg. The immediate imm specifies the amount

of shift. The last ‘dropped’ bit (bit 32) is saved as carry flag in register creg0. In 16 bit

mode dr is the source register and the destination.

Notes: See the permitted values for the immediate in the table ‘Permitted values for

immediate constants’.

Flags: C, N, Z

sra
Syntax: (cond, creg) sra dreg, sreg1, sreg2/sra dr sr

Description: Performs the arithmetic shift right to the contents of the source register

sreg1/sr and places the result to the destination register dreg/dr. The six least significant

bits in the source register sreg2 specify the amount of shift. In 16 bit mode dr is the

second source register and the destination.

Notes: If the unsigned integer formed by the six least significant bits in the source

register sreg2 implies a shift of more than 32 positions then the result will be a shift of 32

positions.

srai
Syntax: (cond, creg) srai dreg, sreg1, imm/srai dr, imm

Description: Performs the arithmetic shift right to the contents of the source register sreg1

and places the result to the destination register dreg. The immediate imm specifies the

amount of shift. In 16 bit mode dr is the source register and the destination.

Notes: See the permitted values for the immediate in the table ‘Permitted values for

immediate constants’.

srl
Syntax: (cond, creg) srl dreg, sreg1, sreg2/srl dr sr

Description: Performs the logical shift right to the contents of the source register sreg1/sr

and places the result to the destination register dreg/dr. The six least significant bits in the

source register sreg2 specify the amount of shift. In 16 bit mode dr is the second source

register and the destination.

Notes: If the unsigned integer formed by the six least significant bits in the source

register sreg2 implies a shift of more than 32 positions then the result will be a shift of 32

positions.

srli
Syntax: (cond, creg) srli dreg, sreg1, imm/srli dr, imm

Description: Performs the logical shift right to the contents of the source register sreg1

and places the result to the destination register dreg. The immediate imm specifies the

amount of shift. In 16 bit mode dr is the source register and the destination.

Notes: See the permitted values for the immediate in the table ‘Permitted values for

immediate constants’.

st
Syntax: (cond, creg) st sreg2, sreg1, imm

Description: Stores the data in the source register sreg2/sr2 to memory location whos

address is calculated as follows: The immediate offset imm is sign extended and added to

the contents of the source register sreg1/sr1. The address is not auto-aligned (two least

significant bits of the resulting address are driven to address bus).

Notes: The two least significant bits can be used for example as byte index if narrower

bus is used. Also the smallest addressable unit can be 32 bit word giving 16GB address

range! See the permitted values for the immediate in the table ‘Permitted values for

immediate constants’.

sub
Syntax: (cond, creg) sub dreg, sreg1, sreg2/sub dr, sr

Description: The content of the source register sreg2 is subtracted from the contents of the

source register sreg1 and the result is placed to the destination register dreg. Exception is

generated if the result exceeds 231-1 or falls below -231. In 16 bit mode dr is the second

source register and the destination.

Notes: Operation is carried out using twos complement arithmetics

Flags: Z, C, N

subu

Syntax: (cond, creg) subu dreg, sreg1, sreg2/subu dr, sr

Description: The content of the source register sreg2 is subtracted from the contents of the

source register sreg1 and the result is placed to the destination register dreg. In 16 bit

mode dr is the second source register and the destination.

Flags: Z, C, N

Notes: Over/underflow is ignored. See programming hints

swm
Syntax: swm imm

Description: Changes the instruction decoding mode. The value of the immediate imm

specifies the mode: imm = 16 => switch to 16bit mode, imm = 32 => switch to 32 bit

mode. Other values are reserved for future extensions.

Flags: IL

Notes: This instruction is not allowed to be executed conditionally. See the permitted

values for the immediate in the table ‘Permitted values for immediate constants’. This

instruction has to be followed by two nop -instructions!

trap
Syntax: trap imm

Description: Generates a software trap. Execution is started at the address of exception

handler routine defined in the CCB register EXCEP_ADDR. The address of the trap

instruction is saved in the EXCEPTION_PC register and the exception cause code in

exception cause register (EXCEPTION_CS). The exception cause code is composed of

the given immediate and fixed offset in order to make the exception code unique.

Therefore it is not possible to generate hardware exceptions by issuing trap instruction.

The value of the PSR which was valid when decoding trap instruction is saved in register

EXCEPTION_PSR.

Notes: See document ‘exceptions’ about the exception cause code.

xor
Syntax: (cond, creg) xor dreg, sreg1, sreg2/xor dr, sr

Description: Performs a bitwise XOR operation to the contents of the source registers

sreg1 and sreg2. The result is placed to the destination register dreg. In 16 bit mode the

bitwise xor is performed to the contents of dr and sr and the result is placed into dr.
Table 6.1 Permitted values for immediate constants

Permitted values for imm
32-bit

Instruction

16-bit Conditional Unconditional
Notes

addi -26 ... 26-1 -28 ... 28-1 -214 ... 214-1
addiu 0 ... 27-1 0 ... 29-1 0 ... 215-1
andi 0 ... 27-1 0 ... 29-1 0 ... 215-1
bxx 1 -29 ... 29-1 - -221 ... 221-1 Should be even in

32bit mode
chrs 0...3 - 0..3
cmpi -26 ... 26-1 - -216 ... 216-1
cop - - imm1: 0...3 Only 32 bit mode
exb 0...3 0..3 0...3

exbfi 3 - - imm1: 0...32
imm2: 0...31

Only 32 bit mode

exh 0 or 1 0 or 1 0 or 1
jal -29 ... 29-1 - -224 ... 224-1 Should be even in

32bit mode
jmp -29 ... 29-1 - -224 ... 224-1 Should be even in

32bit mode
ld -8...7 -28 ... 28-1 -214 ... 214-1
lli - - 0 ... 216-1

(or
-215... 215-1)

Only 32 bit mode

lui - - 0 ... 216-1
(or

-215... 215-1)

Only 32 bit mode

movfc 0...3 0..3 0..3
movtc 0...3 0..3 0..3
muli -26 ... 26-1 -28 ... 28-1 -214 ... 214-1
ori 0 ... 27-1 0 ... 29-1 0 ... 215-1

sexti 0...31 0...31 0...31
slli 0...32 0...32 0...32
srai 0...32 0...32 0...32
srli 0...32 0...32 0...32
st -8...7 -28 ... 28-1 -214 ... 214-1

swm2 16 or 32 - 16 or 32
trap 0...31 - 0...31

1 xx is one of the following: c, nc, lt, ne, gt, eq, egt or elt
2 Future extensions may allow other values.
3 Values up to 63 can fit to imm1, but only the ones specified are used by hardware.

 Table xx, Condition codes

mnemonic condition explanation code Flags
c carry Carry out of MSB 000 C = 1
eq = equal 011 Z = 1
gt > greater than 100 Z = 0 & N = 0
lt < less than 101 Z = 0 & N = 1
ne ≠ not equal 110 Z = 0
elt ≤ equal or less than 010 Z = 1 or N = 1
egt ≥ equal or greater than 001 Z = 1 or N = 0
nc !carry No carry-out 111 C = 0

Notes
Instructions which cannot be put into branch slot are: retu, reti, scall, swm or another

jump/branch

6.3. Instruction execution cycle times

General
Address or data available in stage X means that it has been calculated during the previous

cycle(s) and can be used as input to stage X. In all cases data will be written to register

file during stage 5.

In stage X means that the instruction in question has propagated to stage X even though

the instruction might not be ‘active’ anymore, that is, it does not change the state of the

registers nor outputs of the core.

For example all jumps basicly evaluate an address in stage 1 which is availabe in stage 2.

Some of them save a link address, so they are active until write back stage.

Cycle times below are for the ideal case of zero pipeline stall cycles. Pipeline stalls are

mainly caused by cache memory misses and data dependencies. In ideal conditions the

throughput of pipeline is one instruction per cycle.

Other instructions on the pipeline can use the data/Flags as soon as it’s ready (column 5

in table 2).

Table 6.2 Stage definitions
n Operations Notes
0 - instruction address increment

- current instruction address check (calculated
previously)

- Instruction fetch (from the current address).

1 - 16bit to 32bit instruction extending
- immediate operand extending
- jump address calculation
- decoding for control 1(CCU)
- operand forwarding (ALU operands)
- register operand fetch & operand selection
- Execution conditions check (jumps and others).

Includes condition register bank read.
- evaluation of new status flags (PSR)
- instruction check (unused opcodes, mode

dependent instructions)

Execution condition and
branch condition is checked
(not evaluated) in stage 1!

2 - coprocessor operand selection
- forwarding of data latched from memory bus
- ALU execution, step 1
- address calculation for data memory access
- flag evaluation (Z, N, C)

3 - coprocessor access
- condition register bank write (with scon, read)
- ALU execution, step 2
- Data memory addresses checks: user, CCB and

overflow.
- data forwarding for memory access (st –

instruction only)

CR has internal forwarding.
Flags calculated in the
previous cycle can be seen
directly on output of CR if
needed. Special output for
scon –instruction, all_out,
does not have forwarding.

4 - cor control block (CCB)access
- data memory access
- ALU execution, step 3

5 - register write back Note that register file RF
has internal forward control
which means that data
calculated during stage 4 is
visible directly to stage 1 if
needed

Instruction timing

Table 6.3 Instruction cycle timing

ALU
cycles

latency
from

instruction
fetch to

data
available

Address
on bus

Address
check

complete
Data Condition

Flags
PSR
Flags Instruction

cycle count ready/available in stage
add 1 3 - - 3 3 -
addi 1 3 - - 3 3 -
addiu 1 3 - - 3 3 -
addu 1 3 - - 3 3 -
and 1 3 - - 3 - -
andi 1 3 - - 3 - -
bnc 0 - 2 3 - - -
bc 0 - 2 3 - - -
begt 0 - 2 3 - - -
belt 0 - 2 3 - - -
beq 0 - 2 3 - - -
bgt 0 - 2 3 - - -
blt 0 - 2 3 - - -
bne 0 - 2 3 - - -
chrs 0 - - - - - 2
cmp 1 - - - - 3 -
cmpi 1 - - - - 3 -
conb 1 3 - - 3 - -
conh 1 3 - - 3 - -
cop 0 - 3 6 - - - -
di 0 - - - - - 2
ei 0 - - - - - 2
exb 1 3 - - 3 - -
exbf 1 3 - - 3 - -
exbfi 1 3 - - 3 - -
exh 1 3 - - 3 - -
jal 0 3 5 2 3 3 5 - -
jalr 0 3 5 2 3 3 5 - -
jmp 0 - 2 3 - - -
jmpr 0 - 2 3 - - -
ld 8 1 5 3 4 7 4 7 5 - -
lli 1 3 - - 3 - -
lui 1 3 - - 3 - -
mov 1 1 3 - - 3 - -
movfc 0 4 4 3 6 - 4 - -

movtc 0 - 3 6 - - - -
mulhi 1 2 5 - - 5 - -
muli 3 5 - - 5 - -
muls 3 5 - - 5 - -
muls_16 2 4 - - 4 - -
mulu 3 5 - - 5 - -
mulu_16 2 4 - - 4 - -
mulus 3 5 - - 5 - -
mulus_16 2 4 - - 4 - -
nop 0 - - - - - -
not 1 3 - - 3 - -
or 1 3 - - 3 - -
ori 1 3 - - 3 - -
rcon 0 - - - - 3 -
reti 0 - 4?? 3 - - 2
retu 0 - 2 3 - - 2
scall 0 3 5 2 3 3 - 2
scon 0 4 - - 4 - -
sext 1 3 - - 3 - -
sexti 1 3 - - 3 - -
sll 1 3 - - 3 3 -
slli 1 3 - - 3 3 -
sra 1 3 - - 3 - -
srai 1 3 - - 3 - -
srl 1 3 - - 3 - -
srli 1 3 - - 3 - -
st 8 1 - 4 7 4 7 - - -
sub 1 3 - - 3 3 -
subu 1 3 - - 3 3 -
swm 0 - - - - - 2
trap 0 - 3 - - - -
xor 1 3 - - 3 - -

1 Data is only routed through ALU
2 Executed in step 3 of ALU, based on data evaluated on previous cycle.
3 Data from memory
4 Data from a coprocessor
5 Data in this case is the return address (link) to be saved to the link register.
6 Address in this case is coprocessor index and coprocessor register index => cop register address.
7 If address check is not passed, memory access will not take place.
8 If address falls in range of CCB addresses, no memory access is generated.

Program Counter update timing
Program counter can be updated from various sources:

• PC increment (normal sequential execution)

• Jump address calculation unit (PC relative jumps)

• Output port of the register file (jumps to absolute addresses)

• Interrupt control unit (Interrupt vectors)

• CCB special output ports (system calls and exceptions)

• data bus (boot address can be read from the data bus, if enabled)

• hardware stack (returning from an interrupt routine)

The actual timing, that is, the moment when a new address can be seen on the instruction

address bus, depends on the source. The following table summarizes the timing
Table 6.5, Instruction address timing
Cause of change
in program flow

Address source Address
calculated

Address on bus

pc relative
jumps:
bxx, jmp, jal

Current PC and
extended immediate
offset from the
instruction in stage 1

stage 1 stage 2

absolute jumps:
jmpr, jalr, retu,
scall

scall: a CCB register
output
others: a RF register
output

- stage 2

return from an

interrupt routine:

reti

hardware stack Saved to HW
stack before
switching to

service routine.

stage 4

sequential
increment 1

Current PC and PSR IL
bit

next address:
stage 0

stage 0

switching to
exception handler
2

a CCB register output

- x cycles after the exception
was signalled.

switching to an
interrupt handler
2

a CCB register output
and external offset if
used.

- x cycles after the interrupt
was signalled.

reset data bus if boot_sel –
signal is driven high,
otherwise address is set
internally to zero.

- See chapter ‘timing
specification’ in document
COFFEE_interface.

1 Stages relate to instructions: In stage 0 the program counter points to the instruction being fetched. At the
same time, next address is calculated. When an instruction is in stage 1 the program counter points to the
next memory location. The memory address pointed to in stage 0 was evaluated on the previous cycle.
2 See document about interrupts and exceptions

Note that after swm command, program counter is incremented twice with the old

increment. Table 4 below shows the correct operation.

Some assumptions made to fill in the table below:

• Assume START is aligned to word boundary and the processor is in 32 bit mode.

• PC increment is calculated using previous mode, that is, the mode which was

valid when the instruction currently in decode was fetched from memory.

 Table 6.6 Switching mode

instruction in decode addr bus processor mode
instruction
pointed to

address
<=

PC previous
mode

current
mode

add START START +

4

 32

sub START +

4

START +

8

32 32

mov START +

8

START +

12

32 32

swm START +

12

START +

16

32 32

nop START +

16

START +

20

32 16

nop START +

20

START +

22

16 16

add START +

22

START +

24

16 16

sub START +

24

START +

26

16 16

mov START +

26

START +

28

16 16

swm START +

28

START +

30

16 16

nop START +

30

START +

32

16 32

nop START +

32

START +

36

32 32

add START +

36

START +

42

32 32

sub START +

42

START +

46

32 32

mov START +

46

START +

50

32 32

add START START +

4

 32

sub START +

4

START +

8

32 32

mov START +

8

START +

12

32 32

swm START +

12

START +

16

32 32

nop START +

16

START +

20

32 16

nop START +

20

START +

22

16 16

add START +

22

START +

24

16 16

sub START +

24

START +

26

16 16

swm START +

26

START +

28

16 16

nop START +

28

START +

30

16 32

nop START +

30

START +

32

32 32

add START +

32

START +

36

32 32

sub START +

36

START +

42

32 32

mov START +

42

START +

46

32 32

Underlined row shows a case where increment is two even though the processor is in 32 bit mode. In these
cases the address is aligned by hardware. This has no impact on programmer if normal alignment rules are
followed.

Different cases when switching mode
X refers to an arbitrary word address (address divisible by four).

Case 1, switching from 16bit to 32bit, aligned case
byte address ⇒ x + 0 x + 1 x + 2 x + 3
halfword address
⇒

x + 0 x + 2

word address ⇒ x + 0
swm nop instruction ⇒
nop -

bits ⇒ 31...24 23...16 15...8 7...0
Notes about case 1:

- The last nop instruction above can be replaced with 32 bit version filling also the

empty space.

Case 2, switching from 16bit to 32bit, non-aligned case
byte address ⇒ x + 0 x + 1 x + 2 x + 3
halfword address
⇒

x + 0 x + 2

word address ⇒ x + 0
add swm instruction ⇒
nop nop

bits ⇒ 31...24 23...16 15...8 7...0

Case 3, switching from 32bit to 16bit
byte address ⇒ x + 0 x + 1 x + 2 x + 3
halfword address
⇒

x + 0 x + 2

word address ⇒ x + 0
swm
nop

instruction ⇒

addi mulu
bits ⇒ 31...24 23...16 15...8 7...0
Notes about case 3:
- the 32 bit nop can be ‘replaced’ with two 16 bit nops to get a more general rule:
ALWAYS ADD TWO 16 BIT NOPS AFTER SWM –INSTRUCTION INDEPENDENT

OF MODE!

Pipeline stalls
Table 6.7 Pipeline stalls resolving

Stall type Explanation Resolving Insert
nops

to
stage

Disabled
stages

Enabled
stages

stall/wait
cycles

icache access
wait

1 0 1...5

dcache access
wait

- 0...5 -

cop access
wait

Wait cycle
counter for
icache, dcache
or coprocessor
has a nonzero
value in it.

Wait for the
counter in
question to
reach zero.
Note that once
started, a
counter will
not halt before
zero.

- 0...5 -

1...15

icache miss 1 0 1...5 n
dcache miss

There is no
valid data in
the requested
address.

Wait for the
i_cache_miss
/d_cache_miss
signal to go
low.

- 0...5 - n

flag
dependency

A branch
instruction or
an instruction
executed
conditionally
needs flags
which are not
ready yet.

Wait in stage 1
for the flags to
be ready.

2 0...1 2...5 1

ALU data
dependency

An instruction
needs register
operand(s)

Wait in stage 1
until data is
ready and can

2 0...1 2...5 1...2

which is/are
not ready

be forwarded.

jump address
dependency

A jump needs
register data
which is not
ready yet

Wait in stage 1
until data is
ready and can
be forwarded.

2 0...1 2...5 1...3

bus reserved ld or st –
instruction
needs data
memory bus
but it’s
reserved by an
external
device.

Wait in stage 3
(ld or st) until
signal bus_req
goes low

- 0...5 - n

atomic stall A 32
multiplication
instruction in
stage 1 and
icache access
wait or icache
miss active. 2

Wait for the
memory
access to
finish.

2 0...1 2...5 n/1...15

PC not
writable stall

A jump –
instruction
needs to write
PC but branch
slot instruction
is not fetched
yet.

Wait for the
memory
access to
finish.

2 0...1 2...5 n/1...15

external stall
request

stall –input is
driven high

wait for the
stall signal to
go low

- 0...5 - n

1 The minimum access time for data memory, instruction memory and coprocessor access can be defined by
software to be 1 to 16 clock cycles (1 start cycle + 0...15 wait cycles). Once an access starts it won’t be
stopped or restarted but it can be extended if some other stalls are active AFTER the minimum access time
set by software. This means that overlapping stalls do not extend access times.

2 atomic stall has priority over icache miss or icache access wait. A 32 bit multiplication instruction
followed by mulhi instruction is an atomic operation, that is, these instructions have to be executed together
and cannot be separated. When waiting for the next instruction from memory we cannot know if it is mulhi
or not, thereby we must stall stage 1.

Number of wait bubbles caused by dependencies
Table 6.8 Number of bubbles (nops) added in case of data dependencies
(Instruction which need register operand(s) except jmpr and jalr) 2

Number of ALU cycles 1

Position of
the

instruction 1 1 2 3
2 0 bubbles 1 bubbles 2 bubbles
3 0 bubbles 0 bubbles 1 bubbles
4 0 bubbles 0 bubbles 0 bubbles

1 The instruction which the other (currently in stage 1) depends on.
2 2nd register operand of st –instruction is ignored when checking dependencies.

Table 6.9 Number of bubbles (nops) added in case of data depencencies:
jmpr and jalr.

Number of ALU cycles 1

Position of
the

instruction 1 1 2 3
2 1 bubbles 2 bubbles 3 bubbles
3 0 bubbles 1 bubbles 2 bubbles
4 0 bubbles 0 bubbles 1 bubbles

1 The instruction which the other (currently in stage 1) depends on.

Condition flags (Z, N, and C) are always available when an instruction updating them is

in stage 3. Therefore an instruction updating flags followed by an instruction using them

causes one bubble to be added.

Number of bubbles added when switching context

An interrupt or an exception causes a hardware assisted context switch to take place. The

pipeline is executed to a safe state feeding nop –instructions in and advancing

instructions already on pipeline until they are all in ‘safe state’.

• An instruction is in safe state if

• It won’t change PSR

• It won’t change flags in condition register CR0

• It cannot cause any exceptions

• It won’t change the value of PC

Note that in case of an exception, program counter is immediately updated with the

address of an exception handler routine, whereas in case of an interrupt PC may still

change if there is jump in stage 1 or swm instruction on pipeline.

Table 6.10 Instructions and their safe states

 Modifies/causes a check Safe in stage
add
addi

Modifies flags in condition register CR0.
Overflow checked.

3

addiu
addu

Modifies flags in condition register CR0 3

bc
begt
belt
beq
bgt
bnc
blt
bne

Updates program counter, New address is
checked.

3

chrs Modifies PSR flags. Mode check (chrs not valid in
user mode)

2

cmp
cmpi

Modifies flags in one of the condition registers. If Flags targeted to CR0
=> 3
else
=> 1

cop Mode check (cop not valid in 16 bit mode) 2
di
ei

Modifies PSR flags Mode check (di and ei not
valid in user mode.)

2

exbfi Mode check (exbfi not valid in 16 bit mode) 2
jal
jalr
jmp
jmpr

Updates program counter, New address is
checked.

3

ld Calculates a memory address which has to be
checked.

4

lli
lui

Mode check (lli and lui not valid in 16 bit mode) 2

rcon Updates the whole condition register file. 3
reti Updates program counter, CR0 and processor

status (PSR). Address not checked in the same
context.

3*

retu Updates program counter and processor status
(PSR). Address is checked. Mode check (retu not
valid in user mode)

3

scall Updates program counter and processor status 3

(PSR). Address is checked.
sll 3
slli

Modifies flags in condition register CR0.
3

st Calculates a memory address which has to be
checked.

4

sub Modifies flags in condition register CR0.
Overflow checked.

3

subu Modifies flags in condition register CR0. 3
swm Modifies PSR Flags. Changes PC increment. 3
trap Updates program counter and processor status

(PSR). Address is checked after switching to
exception handler. Incorrect address will result in
eternal loop!!

2. (trap causes an
exception, so it’s never

‘safe’ for interrupts)

all
others

 1

Under normal circumstances reti instruction modifies PC and PSR in stage 3 but in case of a hardware
assisted context switch its only effect is to ensure correct state of the hardware stack. If an interrupt request
gets through while reti is on pipeline (nested interrupts only), hardware stack preserves its state. If an
exception occurs while reti is on pipeline (illegal user address) return address is popped but not saved
anywhere.

Special Notes

• If an instruction further on pipeline is going to write SPSR (writable as register 30

of register set 2) and there’s a scall instruction in stage 1, the one(s) further on the

pipeline are invalidated! This prevents status corruption and ensures safe return

(using retu -instruction).

6.4. ISA Summary

Mnemonic Description Operands Notes

Integer arithmetic
add dreg <= reg1, reg2
addi
addiu

dreg <= reg, imm

addu

add 32 bit integers

dreg <= reg1, reg2

mulhi dreg <=
intermediate

Upper 32 bits of a 64 bit
result

muli dreg <= reg, imm
muls
mulu
mulus

multiply 32 bit
integers

muls_16 multiply 16 bit

mulu_16
mulus_16

integers

sub
subu

subtract 32 bit
integers

dreg <= reg1, reg2

Byte and bitfield manipulation
exb extract byte from

word
dreg <= reg, imm

exbf dreg <= reg1, reg2

exbfi
extract bitfield from
word 32 bit version only

Not allowed to be executed
conditionally

exh extract halfword from
word

dreg <= reg, imm

lli dreg <= imm
lui

Load lower/upper
halfword with
immediate value

dreg <= reg, imm
32 bit version only
Not allowed to be executed
conditionally

sext dreg <= reg1, reg2
sexti

Sign extend an
integer dreg <= reg, imm

conb
conh

Concatenate
bytes/halfwords

dreg <= reg1, reg2

Boolean bitwise operations
and dreg <= reg1, reg2
andi

bitwise and
dreg <= reg, imm

not bitwise not dreg <= reg
or dreg <= reg1, reg2
ori

bitwise or
dreg <= reg, imm

xor bitwise xor dreg <= reg1, reg2

Conditional jumps (branches)
bc
begt
belt
beq
bgt
blt
bnc
bne

Branch if condition is
true.

pc <= pc, imm Pre-evaluated Flags from
one of the eight condition
registers are used to
evaluate condition.

Other jumps
jal jump and save link

address
pc <= pc, imm
dreg <= pc +
increment

Not allowed to be executed
conditionally.

jalr pc <= reg
dreg <= pc +
increment

jmp pc <= pc, imm Not allowed to be executed
conditionally

jmpr

jump

pc <= reg

Integer comparison
cmp creg <= reg1, reg2
cmpi

Compare and
evaluate condition
Flags.

creg <= reg, imm
Not allowed to be executed
conditionally.

Shifts
sll dreg <= reg1, reg2
slli

logical shift left
dreg <= reg, imm

sra dreg <= reg1, reg2
srai

arithmetic shift right
dreg <= reg, imm

srl dreg <= reg1, reg2
srli

logical shift right
dreg <= reg, imm

Only left shift produces
Flags

Memory load and store & data moving
ld load a word from

memory
dreg <= mem[reg +
imm]

st store a word to
memory

mem[reg1 + imm]
<= reg2

mov move a word from
register to register.

dreg <= reg

Address does not have to
be aligned to word
boundary. Usage of bits 0
to 1 depend on
implementation.

Coprocessor instructions
cop coprosessor

instruction
cop <= imm 32 bit version only

Not allowed to be executed
conditionally

movfc mov data from
coprocessor

dreg <= cop, cpreg

movtc mov data to
coprocessor

cop <= reg, cpreg

Mode changing instructions
chrs Change register set to

operate with
psr <= imm

di disable interrupts psr <= IE <= ‘0’
ei enable interrupts psr <= IE <= ‘1’
swm switch between

decoding modes:
psr <= imm

Not allowed to be executed
conditionally. chrs, di, ei
and retu available in super
user mode only.

Version 1.0 supports to

reti return from an
interrupt service
routine

pc <=
hw_stack_addr
psr <=
hw_stack_psr

decoding modes: 16 bit
ISA and 32 bit ISA.

retu return to user/SPSR
defined mode

pc <= lreg
psr <= spsr

scall system entry psr <= sys_psr
pc <=
sys_entry_addr

These instructions should
be used to interface
operating system or
similar.

Miscellaneous
rcon Restore all condition

registers from general
purpose register.

creg <= reg

scon Move the contents of
all condition registers
to a general purpose
register

dreg <= creg

Not allowed to be executed
conditionally

trap software exception psr <= Should be used to catch
software exceptions.

nop no operation, idle

	COFFEE Core USER MANUAL
	July 2007
	Contents
	1. Interface specification of the COFFEE RISC Core
	1.1. Shared data bus
	Handshaking and accessing
	About timing
	Timing diagrams

	1.2. Interfacing coprocessors

	2. Registers
	2.1. General
	2.2. SET 1: General Purpose Registers
	2.3. SET 2: General Purpose Registers
	2.4. SET 2: Special Purpose Registers
	PSR (register index 29)
	SPSR (register index 30)

	2.5. Condition Registers
	2.6. CCB registers
	2.7. Register usage of a privileged user
	2.8. Register limitations in 16 bit mode
	2.9. Register values after reset

	3. Timers
	3.1. Timer registers

	4. Processor Operating Modes
	4.1. 16 bit mode and 32 bit decoding modes
	4.2. Limitations in 16 bit mode
	4.3. Super user mode
	4.4. Resetting the processor
	Defaults after reset and boot procedure

	4.5. Configuring the processor

	5. Interrupts and exceptions
	5.1. Interrupts
	Interrupt interface modes
	Signaling an interrupt
	Priority resolving
	Switching to an interrupt service routine
	Returning from an interrupt service routine
	Internal interrupt handler control & status registers
	Notes
	Do not do this!

	5.2. Exceptions
	Notes
	Handling an exception
	Returning from the exception handler
	Notes

	5.3. Handling exceptions and interrupts
	Definitions
	An interrupt
	An exception

	General philosophy
	Processing of interrupts
	Signaling an interrupt
	Deciding return address
	Notes:
	Switching to an interrupt routine
	Returning from an interrupt service routine

	Processing of exceptions
	Priorities
	Switching to exception handler routine

	6. Instruction specifications
	6.1. General Information
	Abbreviations used
	Notes about instruction definitions

	6.2. Instruction definitions
	add
	addi
	addiu
	addu
	and
	andi
	bc
	begt
	belt
	beq
	bgt
	blt
	bne
	bnc
	chrs
	cmp
	cmpi
	conb
	conh
	cop
	di
	ei
	exb
	exbf
	exbfi
	exh
	jal
	jalr
	jmp
	jmpr
	ld
	lli
	lui
	mov
	movfc
	movtc
	mulhi
	muli
	muls
	muls_16
	mulu
	mulu_16
	mulus
	mulus_16
	nop
	not
	or
	ori
	rcon
	reti
	retu
	scall
	scon
	sext
	sexti
	sll
	slli
	sra
	srai
	srl
	srli
	st
	sub
	subu
	swm
	trap
	xor

	6.3. Instruction execution cycle times
	General
	Instruction timing
	Program Counter update timing
	Different cases when switching mode
	Case 1, switching from 16bit to 32bit, aligned case
	Case 2, switching from 16bit to 32bit, non-aligned case
	Case 3, switching from 32bit to 16bit

	Pipeline stalls
	Number of wait bubbles caused by dependencies

	6.4. ISA Summary
	Integer arithmetic
	Byte and bitfield manipulation
	Boolean bitwise operations
	Conditional jumps (branches)
	Other jumps
	Integer comparison
	Shifts
	Memory load and store & data moving
	Coprocessor instructions
	Mode changing instructions
	Miscellaneous

