AssemblerManual
(AssemblyLanguageProgrammer’sGuide)

COFFEE™ RISCCORE

Version0.7

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7
VERSION HISTORY

Version Date Changes

0.1 25.08.2004 First draft

0.2 11.09.2004 Additions and corrections (Juha)

0.3 13.10.2004 Correctionstofitcrasm pre 2

0.4 01.11.2004 Corrections

0.5 21.12.2004 Correctionsto fit crasm pre2. 11

0.6 31.01.2005 Correctionsto fit crasm 1.0

0.7 18.02.2005 Corrections

Modified: 18.02.2005 2/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

TABLE OF CONTENTS

OVERVIEW ...ttt ettt sttt the e st e st e e s be e e be e s ab e e s abe e abeesbeesabeesaeeeabeeeabessabeeabesebeesaneeses 7
1. ARCHITECTURE-BASED CONSIDERATIONS......cooi ettt sres s sne e 9
11 LS ISy = 1S U 9
111 Main Processor REQISIErS......cccriiiiiririeresiesiesie e ste st st snesae st e e 9

112 COProCESSOr REJISIEIS...uiiuiiieriiieesiesiesiesiesie e ee et saesre st seesaesbesteseenseneenean 23

1.2 BIT AND BY TE ORDERING ..ccvviitieitie it e stesstessateessaeessesssbessasessaessssessssessssssssesssessnsesssesssnens 24
1.3 AADDRESSINGuvviiiitreeeieteeeeitteeeeasbeesseteeesassesasasbesesasbeeesassstesasbesasabeeesabeeesanbeeasabeeesarereens 25
1.4 @i = = T N LS 3O 25
15 NI = 2 (W= T 28

2. LEXICAL CONVENTIONS ...ttt ettt et sttt s sbe s st st e srae s bessbessnbe s snnesneas 32
2.1 BLANK AND TAB CHARACTERS.ctttitteiteeeiteesteessreesseesssessisessasesssesssesssseessessssesssesssesssees 32
2.2 (000 1Y 1Y 1= N S TSROSOt 32
2.3 1] = N T 1= TSP 32
2.4 (000N L1 7Y N S TSROt 33
o S o= | Tl O0 g1 = | £ 33

24.2 Floating-Point CONSANES........coereeerieeeieieieeeeeee et ste et see et see e neeseeeenes 33

243 SMING CONSLANES.erueuereeuerieirteesiee et b e b e b et e b e st se e st b b e seseenennenees 34

25 MULTIPLE LINESPER PHYSICAL LINE w.eiiiteiictie ettt sttt st sbe s snte s srne v 34
2.6 YN I =Y 1= ST 34

P2 T R I o = £ 34

P S A \\ (V11 IS = (<110 | 35

2.6.3 Keyword STBIEMENLccveiiieiiieisieesers e et nneees 35

2.7 EXPRESSIONS.uviiiteeiteecteesteessseesreesreesseesbeessseessseeaseesnseesaseesasessaeessseessseeaseesnseesasessnnensanes 35
2.8 IMIACROS ... oeiitie ittt et et e st e st e s e e sae e e sbe e st e e eabeeebsesbeesabeesabeesasesabeesabeeaaseeabeeanbeesabeesanenrnees 35
2.9 CONDITIONAL EXECUTION .1eiitiiiitiictee ettt e streesbeesebessireesanesebessaressareessessnessanessanesssnssnsesanes 35
2.10 SECTIONS. ..ttt iitet ettt ettt eareeeebeesabeesabeesaeeebeseabeeasseeabeesabeesabeesaessabeseabeeaabeeneesnbeesabeesanesreeentenanns 36
211 LOCATION COUNTER......eciittiitieiiriesiteeiireessesstessseessseessesssessasessssssssessssesssssessessnsessnsessssessnees 37
2.12 RELOCATIONS ...ttt ittt sttt b e et e s st e e e ba e e be e st e s sabe e sbeesbeesabeesbseeabeesabeesabeesanessneas 38

3. MAIN INSTRUCTION SET ..ot citiictie ittt steessre e sbeesare s snesssessaressaseessassnsessnnessanesssnns 39
3.1 SUMMARY OF MACHINE INSTRUCTIONS.....eeiiteceteeisteesteessesessesesesssseessessssessssesssssssessssesanes 40
3.2 INTEGER ARITHMETIC INSTRUCTIONSteiitieitieeitessseesseeessessssesssessssesssessssssssesessessssessssesns 48
3.3 BYTE AND BIT FIELD MANIPULATION INSTRUCTIONScvviiiitieeeereee e creeeeebeeesesaeessnneeens 51
34 BOOLEAN BITWISE OPERATION INSTRUCTIONSociiviieeiteeeeeieeeeeseeessssesesseessssseessnensens 54
35 BRANCH (CONDITIONAL JUMP) INSTRUCTIONS......cututrerrreeiererrresesesesessessesesesseseesessesesenes 55
3.6 JUMP INSTRUCTIONS. ...eecveeitrteteteiteesreessseessessasesssessassessesssessssessssesssssssssssssssssesensessnsessnsenns 58
3.7 INTEGER COMPARISON INSTRUCTIONS.....cciitieieeeireesreessseesseesnsessssessssssssessssesssseessessssesssenns 59
3.8 SHIFT INSTRUCTIONS.ttteiteeireesreesteeeseessseesssesssessasesssessssssssessssessssessssssasessssesssessssssssesanns 59
39 MEMORY LOAD AND STORE, DATA MOVING INSTRUCTIONScovueeireecreenreeereesreesnneesnnas 61
3.10 COPROCESSOR INSTRUCTIONSuvtiiteieteteteessseesseesaresssesssesssessssessssessssssssessssessssessessssesanes 62
3.11 MISCELLANEOUS INSTRUCTIONS. .. .0eeiitieitetiireesteessseessesssesssessssssssesssesssssesssssssessssessssesssnes 62
3.12 PSEUDO INSTRUCTIONSeeiitiiiitieiteeireesreestesssteessasssbesssbessasssssssssessssessssssssessnsessssessnsssssens 64

4, COPROCESSOR INSTRUCTION SET ...coicciiiiteeitieeitie e steeestessreessreessaesssessnessanesssnsssessnns 75
5. ASSEMBLER DIRECTIVES ...ttt sttt ssbe s st st s sbassbe s sbe s e s sneas 79
6. PROGRAMMING CONSIDERATIONS.......co ettt sre s sire e s sbes e s reas 83
6.1 GENERAL CODING CONCERNSceeitiiteeeteesreesseesiseesseessesssessssesssessssssssessasesssssssssssssessnns 83
B.1.1 REGISIEN USE. .ttt b sttt 83

6.1.2 Using Directivesto Control Sections and Location COUNEr'Sccocvvrevirieerieereenenns 85

Modified: 18.02.2005 3/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

T. OBJIECT FILES ...ttt ettt ettt st bt bbb e e an e sbeesbesaaesbeenbesaeesbeennesaeesaean 86
7.1 OBJIECT FILE OVERVIEW .oeviiticieeteeteesttstes st e stssaassbestssbessasssessaesssessessbessssssssssessssssesssesssesns 86
7.2 (@K =g sl = T = O] 1 = N 88

A R o TN w1 1= == (< 89
7.22 The Optional HEAGEScccoiiiiiiriiesess ettt 90
T7.2.3 SECHON HEAUEIS....ccviceicieciecie ettt ettt sttt e e sbe e besbe et e e aresbeesbesasesbeenbenns 20
T.24 SECHON DAA......cceictiiiiciiecte ettt ettt s b e e b et e et e saeesbesabesbe e beebessbeesnesasesbesnsenns 92
7.25 Section RA0Cation INfOrMAatioNccuviieiiiiiiie ettt ettt re e ne e sbe e e 92
7.2.6 Line NUMDErS INfOIMALION........ceiiriiriiiiicie sttt et sbessbeeaesbaesbesnee e 94
7.27 Symbol Table INFOrMAtIioNcciviiieerrirs e es 94
7.2.8 Sring Table INFOrMatioNceivieererieieis e sre s 97
7.3 ASSEMBLER AND LINKER PROCESS OF RELOCATIONcccuiiiiitiiiiiriesteseiesteeiesseestessessveeneas 97
7.4 OBJECT-FILE FORMATS (OMAGIC, NMAGIC, ZMAGIC) ...oooetireeeeeieesiee e 102
741 Impure Format (OMAGIC) FIlES......coioiiiiiiereeee s 103
742 Shared Text (NMAGIC) FilES....cccioieicicessesee et 104
743 Demand Paged (ZMAGIC) FIlES.....cciviiieiriseeieereeesee e 105

L TR = = A O TR 107

Modified: 18.02.2005 4/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

TABLE OF TABLES

Table 1-1. REGISLEr SELS.....cciuiiicieciee ettt re e sre s 10
Table 1-2. Exception types and COUESccveceeieeiee e 27
Table 1-3. Interrupt prioritiesif externa handler isused, O - highestc.co....... 30
Table 1-4. Build-in interrupt CONtroller registerccoovveerereeie e 31
Table 2-1. Backslash CONVENTIONScoiiieeieriee e 34
Table 2-2. Supported Operators in EXPreSSIONS........ccccoveerereriererierese e see e es 35
Table 2-3. Condition codes and MNEMONICS..........cccoririrerierenereseee e 36
Table 3-1. Abbreviations used in Main iNStrUCtION SELccccovverinerienereresese e 39
Table 3-2. RTN notations used in Summary TabIes.........cccocvriniiniinenieninenenee 41
Table 3-3. Notations used in Summary Tables..........ccccerrrnieninne e 42
Table 3-4. Summary of integer arithmetic instructions............cccccoveveieeceseccee s, 43
Table 3-5. Summary of byte and bit field manipulation instructions........................ 44
Table 3-6. Summary of Boolean bitwise operation instructions.............ccccoveeveveenen. 44
Table 3-7. Summary Of JUMP INSITUCHIONS........ccveieiieiesieee e 45
Table 3-8. Summary of integer comparision iNSLUCIONScccceveerieneereeseeree e 45
Table 3-9. Summary of Shift INSITUCLIONS.........c.covieeeeeeeeeeee e 46
Table 3-10. Summary of load, store and data moving instructions..............cc.cceeeeee. 46
Table 3-11. Summary of miscellaneous iNStrUCIONS..........ccccrvreririnerereresese e 47
Table 3-12. Extracted byte SPeCIfiCatioNcccevrieiirerreeee e 52
Table 3-13. Register set definition for writing and reading...........ccocoevveninencncnnenn 62
Table 3-14. Permitted values for immediate Constantcccoereerreoenenseneeienieens 67
Table 3-15. Instruction mapping in 16-bit and 32-bit mode...........cccceeveceieecievienen. 74
Table 4-1. Abbreviations used in COProcessor iNStruction Setcocccvveveeccveecieenen, 75
Table 5-1. Section type CONVENLIONS.........ccceiirecieerie e 82
Table 6-1. Register name and software used name MappinNgccecveeereneereeseennens 84
Table 7-1. File header iNfOrmMationccoveierieieneeie e 89
Table 7-2. Currently defined flags.........coooeieieieecee e 90
Table 7-3. Section header iNfOrMationcooeieieirieeieeee e 91
Table 7-4. Detailed s_flag explanation.............ccceeeiiininieneeeeese e 91
Table 7-5. Section MOAE flagsS........ooereierieiee e 91
Table 7-6. Section CONtENtS flags........covveiereeeee e 92
Table 7-7. Relocation entry infOrmationccccoeiieieiecie s 93
Table 7-8. Currently defined rel0Calion tYPES.......ccovv e iceeciese e 94
Table 7-9. Explanation of abit form inrelocation typeccccccvvevecveceevee e, 94
Table 7-10. Symbol table INformation...........cccovereieriineeee e 95
Table 7-11. Description of asymbol NAME...........cocevieiinieieiee e 95
Table 7-12. The meaning of N_SCNUM field.........cooiiriiiii e 96
Table 7-13. Storage classfield n_SClass ValUES..........ccoeeieirirenircec e 96
Table 7-14. The format of aauxiliary table entry...........ccccerorininnininne 97

Modified: 18.02.2005 5/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

TABLE OF FIGURES

Figure 1-1. Main processor StatUS MEQISIENccueuriirerieieereeiee s 11
Figure 1-2. COProcessor StAtUS MEQISLENccceiueieeieeeeieeeesesie s neeas 23
Figure 1-3. Coprocessor CONIOl FEQISLENcoueiriirerieieeeereeee e 24
Figure 1-4. Bit @and DYte OFTer........ccveiieieieeeee e 25
Figure 3-1. Content Of ROcoiiiiiieereeeee e 52
Figure 7-1. The structure of the 0bjeCt file.........ccoiririi e 87
Figure 7-2. Predefined section raw data SEQUENCE..........ccceererererenienenesesiesesee s 92
Figure 7-3. Symbols appearing SEQUENCE...........cceerreeeeireieeire et eeeste e e e sreesnesseenns 95
Figure 7-4. OMAGIC I@QYOULccceeiieeiie et ee et et sree s 103
Figure 7-5. NMAGIC 1Y OULccccovueeieriieie et nee s 104
Figure 7-6. ZMAGIC dynamiC Y OUL..........cceoereererenieneneesieeee e see e seeneens 105
Figure 7-7. ZMAGIC StatiC [QyOULccceieeeiiieiesieee e 106

Modified: 18.02.2005 6/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

OVERVIEW

Thismanual isauser guide to the COFFEE ™ assembler cr asm
Here is a brief summary of how to invoke crasm It is written with

Perl.

perl crasm [input_file] [-Include path|-1 path] [][-
binary | -b] | [-hex | -h]] [-help|-h] [-list]-1] [-obj
output _file|-o output_file] [-symbols|-s] [-version|-v]

[-warnoff|-w] [--version|--v] [-Z]

input_file
Input file name. Extensionisn't matter.

- bi nary

Create separate binary output files. Name of the text
segment file is name of the source file plus‘_ts.bin’. Name of the data
(and b9 segment file is name of the sourcefile plus‘_ds.bin’.

- hex

Create separate hexadedmal output files. Name of the
text segment file is name of the source file plus‘_ts.bin’. Name of the
data (and bss) segment file is name of the sourcefileplus®_ds.bin’.

-Incl ude path

Path (one) for include files. It is allowed to repeat option
as many times as needed. Search for include filesis dore in following
sequence: directory where is urce file and then paths in order they
are defined.

-hel p
Print available options.

-list
Turn on listings. Name of the list file is name of the
source file with extension ‘Ist’.

-obj filenane
Define name of object-file. Default name is nhame of the
source file. Output file always have extension ‘out’.

-synbol s
Do na add local symbadsin symbad table.

- war nof f
Suppress warning messages.

-version
Print version of assembler.

Modified: 18.02.2005 7/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

--Vversion
Print version of assembler and exit.

Generate an object file even if error was found.

After the program name crasm the command line may contain
options and file names. Options may appear in any order, and may be
before, after, or between file names. The order of file names is
insignificant.

All options should start with hyphen (*-*), except input file name. An
optionisa‘-* followed by one letter or full name; the case of the letter
is important. All options are optional. All options should be separated
by at least one space.

Some options expect exactly one file name (or path) to follow them.

Modified: 18.02.2005 8/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

1. ARCHITECTURE-BASED CONSIDERATIONS

This chapter describes programming considerations that are
determined by the COFFEE™ RISC core architecture. It addresses the
following topics:

* Registers(Section1.1)

» Bit and Byte Ordering (Section 1.2)

* Addressing (Section 1.3)

» Exceptions (Section 1.4)

* Interrupts (Section 1.5)

1.1 Registers

This section discusses the registers that are available and describes
how memory organization affects them. See Section 6.1 for
information on register use and linkage.

1.1.1 Main Processor Registers

COFFEE™ RISC core has two dfferent register sets for data shown
in Table 1-1. The first set (SET 1) is intended to be used by
application programs. The second set of registers (SET 2) is for
privileged software which could be an operating system or similar.
SET 2 is protected from application program. Privileged software can
access both sets. There ae 32 registers in bah sets including general
purpose registers (GPRs) and special purpose registers (SFRs).

In addition COFFEE™ has eight condtion registers (CRs) which are
used with conditional branches or when executing instructions
conditionally. These ae visible to application software & well as to
privileged software.

COFFEE™ has also one memory mapped register bank, CCB (core
control block). CCB is for controlling the processor operation and as
such should be mnfigured by boa code. CCB aso contains few status
registers. Note that, CCB can be etended with an externa
configuration dock.

The usage of general purpose registersis nat restricted by herdware in
any way. See Section 6.1 or compiler documentation for more
information abou register usage.

Modified: 18.02.2005 9/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

SET 1 SET 2
RO GPR 32-bit PRO GPR 32-bit
R1 GPR 32-hit PR1 GPR 32-hit

R28 GPR 32-hit PR28 GPR 32-hit
R29 GPR 32-bit PR29 PR 32-bit
R30 GPR 32-bit PR30 SPR 32-bit
R31 GPR/LR | 32-bit PR31 GPR/LR | 32-bit

Table 1-1. Register sets

1111 SET 1 GPRs

SET 1 has 32 identical genera purpose registers R0O...R31 with one
exception: R31 is used as a link register (LR) with some instructions.
The programmer is free to use R31 for any ather purpose & long asits
specia behaviour is taken into account. All general purpose registers
(andthelink register) are 32-bit wide.

1112 SET 2 GPRs

SET 2 has 30 identical general purpose registers PRO..PR28 and
PR31 with one exception: PR31 is used as a link register by some
instructions. The programmer is free to use PR31 for any other
purpose as long as its specia behaviour is taken into accourt. All
general purpose registers (and the link register) are 32-bit wide.

1.1.1.3 SET 2 SPRs
There is two special purpose registersin SET 2: PR and SPR. PR

is 8-bit wide. When reading data from PSR the “non existent” bits are
read as zeros. Writing to aread only register (PR) isignored.

Modified: 18.02.2005 10/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

1114

PSR (register index 29)
Procesor Status Register is aread only register shown in
Figure 1-1 and contains the flags explained below. Bits 7
down to 5are reserved for future extensions.

RESERVED [E | IL | RSWR | RSRD

UM

.

7.5 4| 2 |

Figure 1-1. Main processor statusregister

| E = 1! Interruptsenabled, | E = 0: Interrupts disabled.
IL = 1: Instructionword lengthis 32 lts, 1L = 0:
Instructionword length is 16 hts.

RSWR hit selects which register set to use as target:

RSWR = 1: SET2, super users st; RSWR = 0: SET1, users
Set.

RSRD hit selects which register set to use as ource:
RSRD = 1: SET2, super users t; RSRD = 0: SET1, users
Set.

umindicates which user mode the processor isin:

uM= 0: super user mode, UM= 1: user mode.

RESERVED: Read as zeros.

SPSR (register index 30)
SHRSis used to save PSR flags when changing user mode
by executing scal | — instruction. It can also be used to
set mode flags for the user: |IE and IL flags are copied
from SPR to PR when retu instruction is exeauted.
Note that bits 31 davn to 5 are writable but only bits 7
downto Oare saved in case of scal | .

CRs

There ae aght 3-bit wide mndition registers CO...C7 (visible bath to
application software and privileged software). Condition registers are
used with conditional branches or when executing instructions
conditionally. Each register contains three flags: Z (Zero), N
(Negative) and C (Carry). When executing compare instructions or
some arithmetic instructions these three flags are cdculated and saved
to the selected CR (arithmetic instructions always save flags to CO).
When condtionally branching a executing, flags from the selected
CR are compared to match a certain condtion given by the
programmer. See Chapter 3 for more information abou instructions
and Section 2.9 for more information abou conditional execution.

Modified: 18.02.2005 11/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

1115

CCB registers

In the following, usage and arganization of control and status registers
is explained. Few things worth nding are discussd first. The wre
configuration Hock (CCB) is a memory mapped register bank, which
contains various registers for controlling the functionality of the core.
It also contains gatus registers, which cannot be written bu are only
used by software for monitoring events. CCB registers are organized
as a continuaus block, that is, memory addresses of the registers
reserve a ontinuous area from the aldress ace. CCB reserves 256
consecutive memory addresses (“byte” addresss) starting from the
address defined in the first CCB register (the base aldress of the
block). CCB can be remapped anywhere in the aldress space by
writing a new value to CCB_BASE register. It is also possible to
extend the range of configuration registers by writing a suitable
address to CCB_END register: Memory accesses in address range
[CCB_BASE] + 256 to [CCB_END] are redirected to an externa
block instead of memory.

Conventions and notes:

Unused bits in registers shorter than 32 bits will appear as zeros but
they should be masked by software for future mpatibility. Bit
indexes range from 0 to 31, O correspording to LSB. When referring
to bit positions we simply refer to bit indexes: A bit in pasition X
means a bit with index X. Offsets from 29H to FFH are reserved for
future extensions.

symbol: CCB_BASE[31..0]

offset: OH

reset value: 0001000H

description: The mntents of this register defines the base addressof the

CCB block. 256 consecutive memory locdions starting
from [CCB_BASE] are reserved for CCB registers. All
memory accesss in range [CCB_BASE] to [CCB_BASE]
+ 255map to CCB registers.

notes: The base addresshas to be aligned to 25@ boundiry, that

is, bits 7 down to O has to be zros. You need to have &
least one instruction between the one remapping the CCB
(st instruction) and ore accessing CCB at new location.

symbol: REGSPC_END[31..0]

offset: 1H

reset value:. 000100FFH

description: The mntents of this register defines the last address of

register address pace. All memory accesses in range
[CCB_BASE] + 256 to [CCB_END] map to an external
register block.

Modified: 18.02.2005 12/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

notes.

symbol:
offset:

reset value:
description:

notes:

symbol:
offset:

reset value:
description:

notes:

symbol:
offset:

reset value:
description:

notes:

symbol:
offset:

reset value:
description:

notes:
symbol:
offset:

reset value:
description:

notes:

Addresses [CCB_BASE] to [CCB_BASE] + 255 map to
CCB independent of the value in REGSPC_END. The
external register block may be any device connected to
data memory bus of COFFEE core.

COPO_INT_VEC[31..0]

2H

00000001H
The contents of this register defines the entry address of an
interrupt service routine for coprocessor O
interrupts/exceptions.

See Section 1.5 for more information about interrupts.

COP1_INT_VEC[31..0]

3H

00000001H
The contents of this register defines the entry address of an
interrupt service routine for coprocessor 1
interrupts/exceptions.

See Section 1.5 for more information about interrupts.

COP2_INT_VECJ[31..0]

4H

00000001H
The contents of this register defines the entry address of an
interrupt service routine for coprocessor 2
interrupts/exceptions.

See Section 1.5 for more information about interrupts.

COP3_INT_VEC[31..0]

5H

00000001H
The contents of this register defines the entry address of an
interrupt service routine for coprocessor 3
interrupts/exceptions.

See Section 1.5 for more information about interrupts.

EXT_INTO_VEC[31..0]

6H

00000001H
The contents of this register defines the base address of an
interrupt service routine for external/timer interrupt
number 0.
The entry address of the interrupt service routine can be
the base address directly or a combination of the base
address and an offset provided externally. See Section 1.5
for more information about interrupts.

Modified: 18.02.2005

13/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

symbol: EXT_INT1 VEC[31..0]

offset: 7H

reset value: 00000001H

description: The contents of this register defines the base address of an
interrupt service routine for external/timer interrupt
number 1.

notes: The entry address of the interrupt service routine can be
the base address directly or a combination of the base
address and an offset provided externally. See Section 1.5
for more information about interrupts.

symbol: EXT_INT2 VECI[31..0]

offset: 8H

reset value. 00000001H

description: The contents of this register defines the base address of an
interrupt service routine for external/timer interrupt
number 2.

notes: The entry address of the interrupt service routine can be
the base address directly or a combination of the base
address and an offset provided externally. See Section 1.5
for more information about interrupts.

symbol: EXT_INT3 VEC[31..0]

offset: 9H

reset value. 00000001H

description: The contents of this register defines the base address of an
interrupt service routine for external/timer interrupt
number 3.

notes: The entry address of the interrupt service routine can be
the base address directly or a combination of the base
address and an offset provided externally. See Section 1.5
for more information about interrupts.

symbol: EXT_INT4 VECI[31..0]

offset: AH

reset value. 00000001H

description: The contents of this register defines the base address of an
interrupt service routine for external/timer interrupt
number 4.

notes: The entry address of the interrupt service routine can be
the base address directly or a combination of the base
address and an offset provided externally. See Section 1.5
for more information about interrupts.

symbol: EXT_INTS5 VEC[31..0]
offset: BH
reset value: 00000001H

Modified: 18.02.2005 14/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

description:

notes:

symbol:

off set:

reset value:
description:

notes:

symbol:

off set:

reset value:
description:

notes:

symbol:

off set:

reset value:
description:

notes:

The contents of this register defines the base address of an
interrupt service routine for external/timer interrupt
number 5.

The entry address of the interrupt service routine can be
the base address directly or a combination of the base
address and an offset provided externally. See Section 1.5
for more information about interrupts.

EXT_INT6_VEC[31..4

CH

0000000H
The contents of this register defines the base address of an
interrupt service routine for external/timer interrupt
number 6.
The entry address of the interrupt service routine can be
the base address directly or a combination of the base
address and an offset provided externally. See Section 1.5
for more information about interrupts.

EXT_INT7_VEC[31..4

DH

0000000H
The contents of this register defines the base address of an
interrupt service routine for external/timer interrupt
number 7.
The entry address of the interrupt service routine can be
the base address directly or a combination of the base
address and an offset provided externally. See Section 1.5
for more information about interrupts.

INT_MODE_IL[11..

EH

FFFH
The contents of this register defines whether the interrupt
service routines should be executed in 16 bit mode or in 32
bit mode. A high bit ('1") causes the core to switch to 32
bit mode when entering the interrupt service routine in
guestion, a low bit ('0") indicates execution of the service
routine in 16 bit mode. Bit positions are associated to
interrupt sources as follows:

bit O — coprocessor 0, bit 1 — coprocessor 1, bit 2 —
COprocessor 2,

bit 3 — coprocessor 3, bit 4 — interrupt O, bit 5 — interrupt
1,

bit 6 —interrupt 2, bit 7 —interrupt 3, bit 8 —interrupt 4,
bit 9 —interrupt 5, bit 10 —interrupt 6, bit 11 —interrupt 7
See Section 1.5 for more information about interrupts and
Chapter 4 for more information about coprocessor.

Modified: 18.02.2005

15/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

symbol:
offset:

reset value:
description:

notes:

symbol:
offset:

reset value:
description:

notes:

symbol:
offset:

reset value:
description:

INT_MODE_UMJ11..0]

FH

FFFH

The contents of this register defines whether the interrupt
service routines should be executed in user mode or in
super-user mode. A high bit ("1) causes the core to switch
to user mode when entering the interrupt service routine in
guestion; a low bit ('0") indicates execution of the service
routine in super-user mode. Bit positions are associated to
interrupt sources as follows:
bit O — coprocessor 0, bit 1 — coprocessor 1, bit 2 —
COprocessor 2,
bit 3 — coprocessor 3, bit 4 — interrupt O, bit 5 — interrupt
1,
bit 6 —interrupt 2, bit 7 —interrupt 3, bit 8 —interrupt 4,
bit 9 —interrupt 5, bit 10 —interrupt 6, bit 11 —interrupt 7
See Section 1.5 for more information about interrupts and
Chapter 4 for more information about coprocessor.

INT_MASK][11..0]

10H

OOOH

Bits in this register can be used to block interrupts from
individual sources. A low bit ('0") causes interrupt requests
from the corresponding source to be blocked. A high bit
(1) alow requests to pass through. Bit positions are
associated to interrupt sources as follows:
bit 0 — coprocessor 0, bit 1 — coprocessor 1, bit 2 —
COprocessor 2,
bit 3 — coprocessor 3, bit 4 — interrupt O, bit 5 — interrupt
1,
bit 6 —interrupt 2, bit 7 —interrupt 3, bit 8 — interrupt 4,
bit 9 —interrupt 5, bit 10 — interrupt 6, bit 11 — interrupt 7
This mask register does not prevent interrupt requests from
entering the INT_PEND register.

INT_SERV[11..0]

11H

000H

This is a read-only status register having a flag for each
interrupt source. A high flag ("1’) means that an interrupt
request from the corresponding source has been accepted.
In practice this means that the interrupt service routine is
being executed or it was executed until another request
with higher priority interrupted the service routine. In this
case there ismultiple flags high in the INT_SERV register.
Executing reti instruction at the end of an interrupt

Modified: 18.02.2005

16/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

notes:

symbol:
offset:

reset value:
description:

notes:

symbol:
fields:

offset:

reset value:
description:

notes:

symbol:
offset:

service routine will cause the corresponding flag to go low.

Bit positions are associated to interrupt sources as follows:

bit O — coprocessor 0, bit 1 — coprocessor 1, bit 2 —

COprocessor 2,

bit 3 — coprocessor 3, bit 4 — interrupt 0, bit 5 — interrupt

1,

bit 6 —interrupt 2, bit 7 —interrupt 3, bit 8 —interrupt 4,

bit 9 —interrupt 5, bit 10 —interrupt 6, bit 11 — interrupt 7
See Section 1.5 for more information about interrupts.

INT_PEND[11..0]

12H

O00H

This is a read-only status register having a flag for each
interrupt source. A high flag ("1’) means that an interrupt
request from the corresponding source has been detected
and is waiting to get accepted. A flag is lowered once the
request is accepted and the service routine started. Bit
positions are associated to interrupt sources as follows:

bit 0 — coprocessor 0, bit 1 — coprocessor 1, bit 2 —
COprocessor 2,

bit 3 — coprocessor 3, bit 4 —interrupt O, bit 5 — interrupt
1,

bit 6 —interrupt 2, bit 7 —interrupt 3, bit 8 — interrupt 4,
bit 9 —interrupt 5, bit 10 —interrupt 6, bit 11 —interrupt 7
See Section 1.5 for more information about interrupts or
additional interrupt document on how to clear the
INT_PEND register by software.

EXT_INT_PRI[31..0]

PRI7[31..28], PR16[27..24], PRI 5[23..20], PRI14[19..16],
PRI3[15..12], PRI12[11..8], PRI 1[7..4], PRIOQ[3..0]

13H

00000000H
This register is used to set priorities for external interrupt
sources. Each interrupt source is associated with a four bit
unsigned value in range from 0 to 15, 0 meaning highest
priority. Bitfield PRI X is associated with external interrupt
number X. X rangesfrom0to 7.

Internal timers of COFFEE can be configured to generate
interrupts in which case the timer in question is associated
to one of the external interrupts => priority of a timer
interrupt shall also be set using EXT_INT_PRI register.
See Section 1.5 for more information about interrupts.

COP_INT_PRI[15..0]
14H

Modified: 18.02.2005

17/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7
fields: PRI3[15..12], PRIZ2[11..8], PRI1[7..4], PRIQ[3..0]
reset value: 000OH
description: This register is used to set priorities for coprocessor
interrupts/exceptions. Each coprocessor is associated with
afour bit unsigned value in range from 0 to 15, 0 meaning
highest priority. Bitfield PRIX is associated with
coprocessor number X. X ranges from 0 to 3.

notes: See Section 1.5 for more information about interrupts.

symbol: EXCEPTION_CY[7..0]

offset: 15H

reset value:. O0H

description: This is a read-only register which is used to report the
cause of an exception to an exception handler.

notes: See Section 1.5 for more information about interrupts.

symbol: EXCEPTION_PC[31..0]

offset: 16H

reset value. 00000000H

description: This is a read-only register which is used to report the
memory address of the instruction which caused an
exception. Can be used by exception handler.

notes: See Section 1.5 for more information about interrupts.

symbol: EXCEPTION_PSR[7..0]

offset: 17H

reset value. OOH

description: Contains a copy of processor status flags (PSR) which
were valid when the instruction causing an exception was
decoded. Can be used by exception handler.

notes: See Section 1.4 for more information about exceptions.

symbol: DMEM_BOUND_LOJ[31..0]

offset: 18H

reset value: 00000000H

description: This register is used to set the lower limit of a continuous
address space for data memory protection. Accesses inside
the area defined together with DMEM_BOUND_HI
register are either allowed in user mode or blocked while
in user mode (allowing accesses outside the area only)
depending on memory protection flags in MEM_CONF
register. In super user mode the whole address space is
accessible.

notes: The CCB block itself can be protected from user level

code by mapping it to protected address space. See
Chapter 6 for more details about programming
considerations.

Modified: 18.02.2005

18/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

symbol: DMEM_BOUND_HI[31..0]

offset: 19H

reset value. FFFFFFFFH

description: This register is used to set the upper limit of a continuous
address space for data memory protection. Accesses inside
the area defined together with DMEM_BOUND_LO
register are either allowed in user mode or blocked while
in user mode (allowing accesses outside the area only)
depending on memory protection flags in MEM_CONF
register. In super user mode the whole address space is
accessible.

notes: The CCB block itself can be protected from user level
code by mapping it to protected address space. See
Chapter 6 for more details about programming
considerations.

symbol: IMEM_BOUND_LO[31..0]

offset: 1AH

reset value: 00000000H

description: This register is used to set the lower limit of a continuous
address space for instruction memory protection. Fetching
instructions from addresses inside the area defined together
with IMEM_BOUND_HI register are either alowed in
user mode or blocked while in user mode (alowing
accesses outside the area only) depending on memory
protection flags in MEM_CONF register. In super user
mode the whol e address space is accessible.

notes: See Chapter 6 for more details about programming
considerations.

symbol: IMEM_BOUND_HI[31..0]

offset: 1BH

reset value. FFFFFFFFH

description: This register is used to set the upper limit of a continuous
address space for instruction memory protection. Fetching
instructions from addresses inside the area defined together
with IMEM_BOUND_LO register are either allowed in
user mode or blocked while in user mode (alowing
accesses outside the area only) depending on memory
protection flags in MEM_CONF register. In super user
mode the whol e address space is accessible.

notes: See Chapter 6 for more details about programming
considerations.

symbol: MEM_CONF[1..0]
offset: 1CH
reset value. 3H

Modified: 18.02.2005 19/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

description:

notes:

symbol:
offset:

reset value:
description:

notes:

symbol:
offset:

reset value:
description:

notes:

symbol:
fields:
offset:

reset value:
description:

This register contains flags which control the protection o
address @aces defined by the mntents of registers
DMEM_BOUND_LO, DMEM_BOUND_HI,
IMEM_BOUND_LO, IMEM_BOUND_HI. Flag in the bit
pasition O controls protection of instruction memory and
flag in the bit position 1 controls protedion o data
memory. If the respective flag is high ('1) the address
space between the low and hgh boumlaries (boundaries
included) is not allowed to be accessed in user mode. If the
flag is low ('0’) then orly the address gace between the
limits (boundaries included) is allowed to be accessd in
user mode.

See Chapter 6 for more details abou programming
considerations.

SYSTEM_ADDR[31..0]

1DH

00000001H

The mntents of this register defines the entry address of
system call hander. When executing scall instruction the
addressin thisregister will be loaded to program courter.

EXCEP_ADDR][31..0]
1EH
00000001H

The contents of this register defines the entry addressof an
exception hander. When an instruction causes an illegal
event the address in this register will be loaded to program
counter.

See Section 1.4 for more information abou exceptions.

BUS CONF[11..0]

CBUS WCJ[11..8], DBUS WCJ[7..4], IBUS WCJ[3..0],
1FH

FFFH

This register is used to set the amourt of wait cycles per
bus access Data memory, instruction memory and
coprocesor buses can be configured separately. The
number of wait cycles can be set to a value in range 0 to
15. Bit fields are assciated to different buses as follows:
CBUS WC - coprocessor bus, DBUS WC - data
memory bus, IBUS WC - instruction memory bus. For
maximum performance, number of access cycles (start
cycle + wait cycles) shodd be set to smallest possible
value. With zero wait cycles; the memory/coprocessor in
question has to be able to respondin shorter time than ore
clock cycle (asynchronous operation).

Modified: 18.02.2005

20/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

notes.

symbol:
fields:

offset:
reset value:
description:

notes:

symbol:
offset:

reset value:
description:

notes:

symbol:
offset:

reset value:
description:

See COFFEE interface document.

COP_CONF [27..0]

C3_IF[27..26], C2_IF[25..24], C1 1F[23.22],
CO_IF[21..20], C3_IR[19..15], C2_IR[14..10],
C1 IR[9.5], CO_IR[4..0]

20H

0000000H

This register is used to configure the behaviour of
coprocessor interface. The coprocessor interface can
operate in COFFEE native mode or MIPS compliant mode.
The mode can be selected for each coprocessor separately:
C3 IF — interface mode of coprocessor 3, C2 IF —
interface mode of coprocessor 2, C1_IF — interface mode
of coprocessor 1, CO_IF — interface mode of coprocessor
0. Use value 0 for COFFEE native mode and value 1 for
MIPS mode.

Fields CO IR through C3 IR specify index of the
instruction register of the coprocessor in question. When
COFFEE core encounters a coprocessor instruction it
writes the instruction word to coprocessor bus and drives
cop_rgi signa according to corresponding CX_IR field.
A vaue from O to 31 can be specified. Fields are
associated to coprocessors as follows. C3 IR -
coprocessor 3 instruction register, C2_IR — coprocessor 2
instruction register, C1_IR — coprocessor 1 instruction
register, CO_IR — coprocessor O instruction register.

In COFFEE core version 1.0 only COFFEE native modeis
supported (CX_IF fields are ignored)

TMRO _CNT[31..0]

21H

00000000H
This register contains the current value of the internal
timer counter 0. Can be used to set initial value to counter
0.

See document about timers.

TMRO_MAX_CNT[31..0]

22H

00000000H

This register is used to define maximum value for timer
counter 0. After reaching maximum value the counter will
be loaded with zero. A value greater than defined by this
register can be written to TMRO_CNT in which case the
counter will count to FFFFFFFFH before starting from
zero.

Modified: 18.02.2005

21/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

notes.

symbol:
offset:

reset value:
description:

notes:

symbol:
offset:

description:

notes:

symbol:
fields:
offset:

reset value:
description:

notes:

symbol:
offset:

reset value:
description:

notes:

symbol:
offset:

reset value:
description:

See document about timers.

TMR1_CNT[31..0]

23H

00000000H

This register contains the current value of the internal
timer counter 1. Can be used to set initial value to counter
1.

See document about timers.

TMR1_MAX_CNT[31..0]

24H

reset value. 00000000H

This register is used to define maximum value for timer
counter 1. After reaching maximum value the counter will
be loaded with zero. A value greater than defined by this
register can be written to TMR1_CNT in which case the
counter will count to FFFFFFFFH before starting from
zero.

See document about timers.

TMR_CONF[31..0]

TMR1_CONF[31..16], TMRO_CONF[15..0]

25H

00000000H
This register is used to configure both interna timers:
timer0 and timer1. See the timer document for explanation
of bit-fieldsin TMR1_CONF and TMRO_CONF.

See document about timers.

RETI_ADDR[31..0]

26H

FFFFFFFFH

The address in this register will be loaded to program
counter when executing reti instruction. When entering
an interrupt service routine this register contains a valid
return address by default. Return to different address can
be forced by writing the desired return address to this
register before executingreti .

Interrupts should be disabled when writing to this register.
See Section 1.5 for more information about interrupts.

RETI_PSR[7..0]

27H

OEH

The contents of this register will be written to PSR
register when executing reti instruction. When entering
an interrupt service routine this register contains PSR flags

Modified: 18.02.2005

22/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

1.1.2

1121

notes.

symbol:
offset:

reset value:
description:

notes:

from the interrupted context. Return with modified flags
can be forced by writing the desired flags to this register
before executingreti .

Interrupts should be disabled when writing to this register.
See Section 1.5 for more information about interrupts.

RETI_CRO0[2..0]

28H

OH

The contents of this register will be written to flag register
CO when executing reti instruction. When entering an
interrupt service routine this register contains CO flags
from the interrupted context. Return with modified flags
can be forced by writing the desired flags to this register
before executingretii .

Interrupts should be disabled when writing to this register.
See Section 1.5 for more information about interrupts.

Coprocessor Registers

Milk coprocessor has 8 general purpose 32-bit registers for arithmetic
operands and results storage. Two special purpose registers are present
in the architecture: status register and control register.

Status Register

It'" sa3adit register shown in Figure 1-2.

1= 13 12 L1 {[i} o = 7 & 5 1 i 2 1 1]

TILA | DA WA | WA TTEA | OFA [WA 1TC

WEC [WVE [NKC | UFC | OFC |

Figure 1-2. Coprocessor statusregister

1122

Bits 31..14 are not used in the current implementation, and it' s
assumed they all are zeroes.

Bits 13..7 are the flag bits related to floating-point exceptions, and
they refer to the whole computation since last reset or last writing

from user.

Bits 6..0 are the same flags, but they refer to the last executed
instruction only.

Control Register

The content of the control register is shown in Figure 1-3.

Modified: 18.02.2005

23/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

apz apl LEST COP CRCODE

Figure 1-3. Coprocessor control register

1.2

Bits 31..% contain the encoding of the cop instruction of COFFEE™
RISC core.

Bits 25.24 are used to index one among the 4 coprocessors that can be
attached to COFFEE™ RISC core.

Bits 23.22 are unused.

Bit 21 specifies the floating-point precision. Milk coprocessor
currently supparts only single precision, and this bit is always 0.

Bits 20..16 are the address of the second operand’ s urce register.
When the current instruction supports only on qerand this field is
ignored. Note that since only 8 registers are present in the architecture,
bits 20 and 19 are nat used.

Bits 15..11 are the aldress of the first operand s ource register. Note
that since only 8 registers are present in the achitecture, hits 15 and
14 are not used.

Bits 10..6 are the aldress of the destination’ s register. Note that since
only 8 registers are present in the achitecture, bits 10 and 9 are not
used.

Bits 5..0are the opcode of the current instruction performed by Milk.

Bit and Byte Ordering

A system’' s byte ordering scheme, or endian scheme, affects memory
organizaion and defines the relationship between address and byte
pasition of datain memory:
* Big-endian systems dore the sign hit in the lowest addressbyte
» Little-endian systems store the sign ht in the highest address

byte

COFFEE™ RISC uses the big-endian byte scheme. Byte ordering is
asfollows:
e The bytes of a longword (64-bit) are numbered from 0 to 7.
Byte 0 holds the sign and most significant bits
* The bytes of aword (32-hit) are numbered from 0 to 3. Byte O
halds the sign and most significant bits
* The bytes of a halfword (16-bit) are numbered from O to 1.
Byte 0 holds the sign and most significant bits

The bits of each byte ae numbered from 7 to O, using the format
shown in Figure 1-4.

Modified: 18.02.2005 24/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

longword

Bit: 63 .. 5655 .. 4847 .. 4039 .. 3231 .. 2423 .. 1615 . 87 . O
[byte 0 [byte 1 [byte 2 [byte 3 | byte 4 [byte 5 [byte 6 [byte 7 |

sign and most
significant bits
word

Bit: 31 .. 2423 .. 1615 .. 87 . 0
[byte 0 [byte 1 [byte 2 [byte 3 |

sign and most
significant bits

halfword

Bit: 15 .. 87 0

sign and most
significant bits

byte
Bitt 7 6 5 4 3 2 1 0
|+| [T T[] I+|
most least
significant bit significant bit

Figure 1-4. Bit and byte or der

1.3 Addressing

COFFEE core can only address full words. This is alleviated by
providing special instructions for fast extraction and merging of
bytes/halfwords. Based addressing is supported by hardware while
others must be synthesized by software. Two instructions are provided
for accessing data in memory: | d for loading a word from memory
and st for storing a word to memory. See Chapter 3 for more
information about main instruction set.

1.4 Exceptions

In this document an exception means an event that will halt the
processing in the current context immediately and cause the core to
switch to an exception handling routine. An exception is considered
an error condition and has to be dealt with immediately. Exceptions
arelisted in Table 1-2.

An instruction causing an exception is canceled and execution of an
exception handler is started at an address defined in CCB register
EXCEP_ADDR. Before switching to the exception handler status
information is saved to following CCB registers:

Modified: 18.02.2005 25/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

EXCEPTION_PC — memory address of the violating instruction,
EXCEPTION_PSR — PSR flags used to when decoding violating
instruction, EXCEPTION_CS — Exception code, see table below.

The exception handler will be started in superuser mode, interrupts
disabled.

Note that very often in literature an exception means interrupting the
processor in general. See also Section 1.5 for information about
interrupts.

For more information about exceptions see additional exception
documentation.

Modified: 18.02.2005 26/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Code Name Description
0 Instruction address | While in user mode, instruction is fetched from
violation' memory address not all owed for user
1 Unknown opcode | Version 10 of COFFEE™ RISC does not have
any unused opcodes which makes this obsol ete
2 Illegal instruction While in 16bit mode, trying to execute an
instruction which is valid only in 32bit mode
or trying to execute asuperuser only instruction
in user mode
3 Missaligned jump | Calculated jump target is not aligned to word
address’ (82-hit mode) or hafword (16-bit mode)
bourdary
4 Jump address A PC relative jump below the bottom of the
overflow memory or above the top d the memory
5 Miss aligned Instruction address is nat aligned according to
instruction address® | mode, this can be cused by:
» Externa boa address was naot aligned
to word boundary
 An interrupt vector is not properly
aigned o interrupt mode is not
correctly set
e System entry address is not aigned to
word boundry
224..255 | trap* Processor encourtered atrap instruction
6 Arithmetic The result of a signed arithmetic operation
overflow exceeds 2*! - 1 o fall s below -2**
7 Data address While in user mode, a data address refers to
violation memory address nor all owed for user
8 Data address Trying to index data below the bottom or above
overflow the top d the memory
9 Illegal jump Trying to jJump to proteded instruction memory
areawhilein user mode
10..15 Reserved for future extensions

Table 1-2. Exception types and codes

Notesfor Table 1-2:

1 If sequential execution traverses the boundary of the protected
instruction memory area, the address of the instruction pointed to is
saved.

2 A jump between memory areas using dfferent encoding wil | result
in unpredictable behaviour.

3 In this case, the address is saved, since it canna be known which
instruction (if any) caused the exception.

* For software exceptions (such as division by zero, o array bounds
exceeded). Exception addresswill point to t r ap instruction. Note, that
you cannd generate hardware exceptions using trap instruction
because trap code will be padded with ones.

Modified: 18.02.2005 27/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

1.5 Interrupts

In this document an interrupt is defined as an event that causes
hardware asgsted context switch because an external/internal deviceis
requesting time from CPU (Centra Processing Unit). This is the
normal way to interrupt a procesor. Interrupt requests can ariginate,
for example, from a timer or an external 10 (Input/Output) device,
coprocessor etc. This section covers the built-in interrupt controller of
COFFEE™ core.

COFFEE™ core supports conrecting eight external interrupt sources
directly. If coprocessors are not conrected, four inpus reserved for
coprocessor exception signalling can be used as interrupt request lines
giving possibility to conned twelve sources diredly. Built-in timers
can also be wmnfigured to generate interrupts. This feature can be used
for example to switch execution to an operating system kernel in
multitasking systems.

All interrupts are vedored. Interrupt vectors reside in CCB. With
built-in interrupt controller the entry address of an interrupt service
routine is the crresponding vector directly. If an external controller is
used the entry address is combination d the vector and an off set given
externally: ISR_ENTRY = BASE + (OFFSET x 16), where

BASE = EXT_INTX_VEC[31.12],
OFFSET = provided by an external controller,
ISR_ENTRY = entry address of an interrupt service routine.

Once an interrupt request is detected, it is saved in a register called
INT_PEND, which isvisible via CCB. In order to interrupt the core, a
pending request has to passpriority check and masking. To pass the
following condtions have to be valid: |IE flag in processor status
register must be set, Interrupt mask register (INT_MASK) has to have
ahigh @t (‘1) in the correspondng pasition, nointerrupts with higher
priority are pending a in service and instructions currently on
pipeline do na cause exceptions. Once a pending request gets
through, the oontrol unit of COFFEE™ core will initiate context
switch as on as possible.

The following steps are taken when switching to an interrupt service
routine. Return address, processor status register and condition
register CO are saved to hardware stack. (The top d the hardware
stack is visible as three separate registers in CCB). The start address
of an interrupt serviceroutine is calculated and written to the program
counter. The bit correspondng to the interrupt source is <t in
INT_SERV register and cleared from INT_PEND register. Further
interrupts are disabled by clearing IE flag from PSR. Signa
INT_ACK is pulsed to inform an external interrupt controller that a

Modified: 18.02.2005 28/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

request got through and is now in service. Finaly, execution of an
interrupt service routine is started in mode defined by CCB registers
INT_MODE_IL and INT_MODE_UM.

Returning from an interrupt service routine is done by executing r et i

instruction. Execution of reti instruction causes the state of the core
to be restored from hardware stack. By default, execution resumes
from the address, which was saved to hardware stack when entering
service routine. If execution is desired to be resumed from a different
context the hardware stack can be modified by writing suitable values
to CCB registers RETI_ADDR, RETI_PSR and RETI_CRO. Signal
INT_DONE is pulsed to inform an externa interrupt controller that
handling the latest acknowledged request has ended. The
corresponding bit is cleared from INT_SERV register.

Priorities between interrupt sources can be set by software via CCB
registers. Interrupt sources can be masked individually via CCB mask
register and disabled or enabled al at once using di and ei
instructions. If internal interrupt handler is used, the priorities
between sources can be set by software, with external handler,
priorities will be fixed according to Table 1-3. Note that priorities for
coprocessor exceptiong/interrupts can aways be set by software. If
multiple sources have the same priority, resolving is performed
internally in the following order (COPO_INT having the highest
priority):

COPO_INT, COPL_INT, COP2_INT, COP3_INT,

EXT_INTO, EXT_INTL, EXT _INT2, EXT_INTS,

EXT_INT4, EXT_INT5, EXT_INT6, EXT_INT?.

A request with higher priority can interrupt the current service routine
if interrupts have been re-enabled in the routine with ei instruction
(nesting of interrupts).

Modified: 18.02.2005 29/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Priority Name
Coprocessor number 0 exception/interrupt
Software Coprocessor number 1 exception/interrupt

controlled Coprocessor number 2 exception/interrupt

Coprocessor number 3 exception/interrupt

15 External interrupt O
15 External interrupt 1
15 External interrupt 2
15 External interrupt 3
15 External interrupt 4
15 External interrupt 5
15 External interrupt 6
15 External interrupt 7

Table 1-3. Interrupt prioritiesif external handler isused, O - highest

Do not do this!

Do not change interrupt priorities while in interrupt service routine if
you use nested interrupts (unless you are 100% sure that a new request
from a source cannot arise before a service routine is finished). In
extreme cases this can lead to hardware stack overflow if interrupt
nesting level is twelve and priorities are changed so that multiple
reguests from a single source can be active simultaneously. Normally
an interrupt service routine cannot be interrupted by a new request
from the same source because of priority resolving.

In Table 1-4 is a summary of the registers of the built-in interrupt
controller. All the registers are accessed via CCB. See Section 1.1 for
more information about registers.

For more information about interrupts see additional interrupt
documentation.

Modified: 18.02.2005 30/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide)

Version 0.7

Symbol

Usage

COPO INT_VEC

Entry address of an interrupt service routine for coprocessor 0.

COPL INT_VEC

Entry address of an interrupt service routine for coprocessor 1.

COP2_INT_VEC

Entry address of an interrupt service routine for coprocessor 2.

COP3_INT_VEC

Entry address of an interrupt service routine for coprocessor 3.

EXT_INTO VEC

Base/entry address of an interrupt service routine for interrupt O.

EXT_INT1 VEC

Base/entry address of an interrupt service routine for interrupt 1.

EXT_INT2 VEC

Base/entry address of an interrupt service routine for interrupt 2.

EXT_INT3 VEC

Base/entry address of an interrupt service routine for interrupt 3.

EXT_INT4 VEC

Base/entry address of an interrupt service routine for interrupt 4.

EXT_INT5 VEC

Base/entry address of an interrupt service routine for interrupt 5.

EXT_INT6_VEC

Base/entry address of an interrupt service routine for interrupt 6.

EXT_INT7 VEC

Base/entry address of an interrupt service routine for interrupt 7.

INT_MODE_IL | Instruction decoding mode flags for interrupt routines.
INT_MODE_UM | User mode flags for interrupt routines.
INT_MASK Mask register for blocking requests.
INT_SERV Interrupt service status bits (read-only).
INT_PEND Pending interrupt requests (read-only).
EXT_INT PRI Register for defining priorities of interrupt requests.
COP_INT_PRI Register for defining priorities of interrupt requests from
COProcessors.
RETI_ADDR Top of hardware stack, program counter of an interrupted context.
RETI_PSR Top of hardware stack, processor status of an interrupted context.
RETI_CRO Top of hardware stack, condition register CO of an interrupted

context.

Table 1-4. Build-in interrupt controller register

Modified: 18.02.2005

31/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

2. LEXICAL CONVENTIONS

This chapter describes lexical conventions associated with the
following items:

e Blank and Tab Characters (Section 2.1)

* Comments (Section 2.2)

* ldentifiers (Section 2.3)

e Constants (Section 2.4)

» Physical lines (Section 2.5)

» Statements (Section 2.6)

e Expressions (Section 2.7)

* Macros (Section 2.8)

» Conditional Execution (Section 2.9)

e Sections (Section 2.10)

» Location Counters (Section 2.11)

* Relocations (Section 2.12)

2.1 Blank and Tab Characters

You can use blank and tab characters anywhere between operators,
identifiers, and constants. Adjacent identifiers or constants that are not
otherwise separated must be separated by a blank or tab.

These characters can also be used within character constants,
however, they are not alowed within operators and identifiers

2.2 Comments

The double slash (//) and semicolon (;) introduces a comment.
Comments that start with a “//" (or *;") extend through the end of the
line on which they appear.

Block comments are not supported.

2.3 Identifiers

An identifier consists of a case-sensitive sequence of alphanumeric
characters (A-Z, a-z, 0-9) and the following special character:
e . (period)

Identifiers can be up to 31 characters long, and the first character
cannot be numeric (0-9).

If an undefined identifier is referenced, the assembler assumes that the
identifier is an external symbol. The assembler treats the identifier like
a name specified by a . gl obal directive (see Chapter 5 for more
information about directives).

Modified: 18.02.2005 32/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

If the identifier is defined to the assembler and the identifier has not
been specified as global, the assembler assumes that the identifier isa
local symbol.

2.4 Constants

The assembler supports the following constants:
» Scalar constants (Section 2.4.1)
» Floating-point constants (Section 2.4.2)
» String constants (Section 2.4.3)

2.4.1 Scalar Constants

The assembler interprets all scalar constants as two' s complement
numbers. Scalar constants can be any of the digits
0123456789abcdefABCDEF.

Scalar constants can be decimal, binary, hexadecimal, or octal
constants:

» Decimal constants consist of a sequence of decimal digits (0-9)
without aleading zero.

* Binary constants consist of the characters Ob (or 0B) followed
by a sequence of binary digits (01).

» Hexadecimal constants consist of the characters Ox (or 0X)
followed by a sequence of hexadecimal digits (O-
9abcdefABCDEF).

» Octal constants consist of the characters Oc (or 0C) followed
by a sequence of octal digits (0-7).

2.4.2 Floating-Point Constants

Floating-point constants can appear only in floating-point directives
(see Chapter 5 for more information about directives) and in the
coprocessor floating-point instructions (see Chapter 4 for more
information about coprocessor instructions). Floating-point constant
should be defined like follows: digit zero followed by f/F followed by
sign (optional) followed by integerl (represents fraction part)
followed by e/E followed by sign of exponent (optional) and finaly an
integer 2 representing exponent:

Of | F[+] -] <i nt eger 1>e| E[+| -] <i nt eger 2>

For example, the number .02173 should be represented as follows:

.float OF2173E-5

Hexadecimal floating-point constants are not supported.

Modified: 18.02.2005 33/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

2.4.3

2.5

2.6

2.6.1

The as=mbler does nat use any roundng mode to convert floating-
point constants.

String Constants

All characters except the newline daracter are allowed in string

constants. String constants begin and end with double quaation marks

(1!).

The assmbler observes sme of the backslash conventions used by

the C language. Table 2-1 shows the assmbler' s backslash
conventions.

Convention | M eaning

\n Newline (0x0a)

\0 End d string (0x00

\r Carriage return (0x0d)
\t Horizontal tab (0x09)
\\ Backslash (0x05)

\” Quotation mark (0x22)

Table 2-1. Backslash conventions

Multiple Lines per Physical Line

Y ou cannot include multiple statements on the same line.

Statements

The assembler supparts the following types of statements:

* Null statements

» Keyword statements
Eadh keyword statement can include an optional label, an operation
code (mnemonic or directive), and zero o more operands (with an
optional comment following the last operand on the statement):

[l abel:] opcode operand [// | ; comrent]

Labels

A label definition consists of an identifier followed by a colon (:).
(See Section 2.3 for the rules governing identifiers.) Label definitions
assgn the aurrent value and type of the location counter to the name.
An error results when the name is already defined.

A label definition always ends with a colon. You can put a label
definition onaline by itself.

Numeric labels are not suppated.

Modified: 18.02.2005 34/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

2.6.2

2.6.3

2.7

2.8

2.9

Null Statement

A null statement is an empty statement that the assembler ignores.
Null statements can have label definitions. For example:

| abel : /! some comment

Keyword Statement

A keyword statement contains a predefined keyword. The syntax for
the rest of the statement depends on the keyword. Keywords are either
assembler instructions (mnemonics) or directives.

Assembler instructions in the main instruction set and the coprocessor
instruction set are described in Chapter 3 and Chapter 4, respectively.
Assembler directives are described in Chapter 5.

Expressions

An expression is a sequence of symbols and operations that represents
avalue. An expression specifies a numeric value. This value can be an
address, immediate value, or constant. Arguments can be constants or
symbols.

oper ator description
* multiplication
/ division
+ addition
- subtraction
0 grouping parenthesis

Table 2-2. Supported operatorsin expressions

Macros

It is possible to define macro with . macr o directive. Macro should
finish with . endmdirective.

In second line of macro it is possible to define local macro labels
using directive. | ocal .

Macro can have parameters. Two macros cannot have the same name.
Number of call parameters and defined parameters should be the
same. See Chapter 5 for more information about directives.

Conditional Execution
Conditional execution syntax is as follows:

if (cond, cr) instruction

Modified: 18.02.2005 35/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

where cond is as gecified in the Table 2-3 and cr is c0, c1, c2, c3, ¢4,
C5, €6 or C7.

Conditional execution isn't alowed in 16-bit mode. Just if condition
register is CO, conditional execution is nat a syntax error in 16-bit
mode, but is expanded like this:

bcond 4
nop
i nstruction

mnemonic condition explanation code flags
C carry Carry out of MSB 000 Cc=1
eq = equal o Z=1
ot > greater than 100 Z=0& N=0
It < less than 101 Z=0& N=1
ne 7 not equal 110 Z=0
et < equal or lessthan 010 Z=1aN=1
egt > equal or greater than 001 Z=1aN=0
nc lcarry No carry-out 111 CcC=0

Table 2-3. Condition codes and mnemonics

2.10 Sections

Default sections and their usual meanings:
e .bss (block started by symbd) — zero initialized data (and
uninitialized data)
» .text — PC relative stuff (might be code, might be data)
» .data-initialized data
* .rdata-read-only data

User is able to define additional sections using . secti on directive.
These could be used to alocate some “special” data or code. See
Chapter 5 for more information abou directives.

Subsections (e.g.,. text 0text N)aren't supported.

Absolute section can be defined like this:

.section OS_SEC, d, O0xABCD0O000
.section OS_SEC, 0xABCD0O000
.data 0x10000000

When an assembler sees one of the section drectives: . bss, . text,
.data, .rdata or . section it switches to a location counter of that
particular section (also to a working mode of that particular section).

Modified: 18.02.2005 36/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

2.11

If a section was not defined before in the current file, the location
counter in question is st to zero.

If none sectionis defined in 1% line, it is count to be text section.
Note: it is needed to define section mode using .c odexX directive
immediately after section description drective. This creates internal
subsections depending on coding mode. All subsectionsin ouput file
are in the same order like in source file and have own section header
(See Section 7.2.3 for more information abou section header).

If modeisn't set, it is asumed to be 32-bit mode, but then Instruction
Simulator will not work properly.

Section ader in ouput fileis srown in Figure 7-2.
See Chapter 7 for more information abou COFF output file.

Location Counter

The smallest addressable unit is assumed to be one byte, which means,
that any location courter (each section hes a location counter) is
incremented by an amourt equal to the anourt of bytes produced by
an asembly language statement. For example, the following statement

produces 12 bytes and increments the location courter by 12:
.a scii “Hellow orld \ 0"

Following statement increments the locations counter by 4 if 32-bit

encodingisused and by2 if 16-bit encodingis used:
addi R1, Oxff

COFFEE™ core does nat support byte accesses even thoudh software
tools expect it to! To make this work we throw away two address bits
and say goodbye to 16GB address gace where each consecutive
address refers to 32-bit word. Note: there ae SEVERE
LIMITATIONS.

The asmbler is nat expected to automatically align data dlocations,
it gives error messages of missaligned cases. Words shoud start on
word boundary, hafwords on halfword boundary. Byte can be
anywhere (byte boundary). 32bit instructions should start on word
boundary. 16-bit instruction shoud start on halfword boundary.

See Chapter 5 for more information abou directives .org and
align .

Assembler does some alignment onend d section.

Modified: 18.02.2005 37/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

2.12 Relocations

It is impossible to specify a relocation type explicitly in assembly
code. Assembler sets all types of relocation internally and produces
the special relocation information (assembler supports COFF format).
All relocation references are done with assumptions that all sections
starts on address 0x00.

See Section 7.2.5 for more details about relocation information.

Modified: 18.02.2005 38/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

3. MAIN INSTRUCTION SET

This chapter describes instruction notation and discusses assembler
instructions for the main processor. Chapter 4 describes coprocessor
notation and instructions.

Section 3.1 contains instruction set summary tables.

The assembler' s main instruction set contains the following classes of
instructions:

Integer arithmetic instructions (Section 3.2)

Byte and bit field manipulation instructions (Section 3.3)
Boolean bitwise operation instructions (Section 3.4)
Branch (conditional jump) instructions (Section 3.5)
Jump instructions (Section 3.6)

Integer comparison instructions (Section 3.7)

Shift instructions (Section 3.8)

Memory load and store, data moving instructions (Section 3.9)
Coprocessor instructions (Section 3.10)

Miscellaneous instructions (Section 3.11)

Pseudo instructions (Section 3.12)

The abbreviations used this chapter are listed in Table 3-1.

Abbreviation | Description
creg Condition register specifier
creg [{ c0,c1,c2,c3,c4,c5,c6,c7}
cond Condition specifier, see table 2-3.
cond [{ c,eq,gt,It,ne elt,egt,nc}
dreg, sreg, Register specifiers:
sregl, sreg2, | dreg — destination register [reg32
sreg, sregl, sreg2 — source registers [reg32
reg32 =
{rO,r1,r2,r3,r4,r5,r6,r7,r8,r9,r10,r11,r12,r13,r14,r15,r16,
r17,r18,r19,r20,r21,r22,r23,r24,r25,r26,r27,r28,r29,r30,r31}
dr, sr, srl, sr2 | Register specifiers:
dr — destination register [J reg8
sreg, sregl, sreg2 — source registers [reg8
reg8 = {r24,r25,r26,r27,r28,r29,r30,r31}
imm, immL1, Scalar or symbolic constant or an expression revealing a
imm?2 constant. See Table 3-14 for allowed values
cp_sreg, coprocessor source and destination register specifiers
cp_dreg respectively
{rO,r1,r2,r3,r4,r5,r6,r7,r8,r9,r10,r11,r12,r13,r14,r15,r16,
r17,r18,r19,r20,r21,r22,r23,r24,r25,r26,r27,r28,r29,r30,r31}

Table 3-1. Abbreviations used in main instruction set

Modified: 18.02.2005

39/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Notes about instruction definitions

16-bit mode refers to instruction word length. Data is manipulated in
32-bit words except with 16-bit multiplication instructions.

If the syntax of an instructionisdifferent in 16-bit mode than in 32bit
mode then bah syntaxes are presented: First the 32-bit version and
then 16bit version. If both syntaxes are similar (or the particular
instruction is nat defined in 16-bit mode) then only oreis presented.
Optional parameters for conditional execution are enclosed in
brackets.

Conditional executionisnat alowed in 16-bit mode.

3.1 Summary of Machine Instructions

Tables from Table 3-4 to Table 3-11 presents a summary of machine
instructions implemented in COFFEE™ core. The exact behaviour of
instructions is illustrated using RTN notation (Register Transfer
Notation), which isexplained in Table 3-2.

Modified: 18.02.2005 40/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Operator Description
— Register transfer. Left hand side of the operator istarget and right hand side is source.
[] Memory index. Selects one item or arange of items. Most often one word.
<> Bit index. Selects abit or arange of bits.
n.m Index range from n to m. Either n downto m or ntom.
— Condtion ogerator. If value on left hand side istrue, action a value onright hand sideis
yielded.
= Substitution (of dummy variables).
Concatenation. Bits onright are appended to bits on left.
Parallel separator. Used to list operations which are performed in parallel.
; Sequential separator. Used to list operations which are performed sequentially. Left hand
side performed first.
@ Repetition. Vaue on right hand side is repeated as many times as ecified by value on
left hand side. Vaues are mncaenated.
{} Operation modifier. Refines precaling qoeration.
() Operation a value grouping. (evaluation ader)
= # < < >> | Comparison. Evaluatesto true (1) or false (0).
+ - x = Arithmetic operators: addition, subtraction, multiplication, division.
ogb- 0= Logical operators: AND, OR, NOT, EXCLUSIVE OR, EQUIVALENCE.
<< >> Left shift and right shift operators respectively.

Table 3-2. RTN notations used in Summary Tables

Modified: 18.02.2005 41/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

mnemonic explanation

dr, sr, cr Destination register index, source register index and condition register index
respectively.

imm Immediate constant embedded in instruction word, zero-extended by hardware.

simm Immediate constant embedded in instruction word, sign-extended by hardware.

R Currently visible register bank, a set of 32 registers or coprocessor register bank.

M Ideal data memory which fillsthe 4GB address space, word addressed.

C Condition register bank, a set of eight three-bit wide registers.

carry Carry flag evaluated by compare instructions and some arithmetic instructions.

neg Negative flag evaluated by compare instructions and some arithmetic instructions.

zero Zero flag evaluated by compare instructions and some arithmetic instructions.

M64 Intermediate register, which contains a 64-bit product of previous 32-bit
multiplication.

HWS Hardware stack. Top of stack: HWS[0].

notes

Symbols which are not defined in this table are dummy variables (or defined earlier in this manua ?).
If abit field on right hand side of * < ’operatorishorterthanthedestinationmlefthankide, the

bit field is padded with zeros from left. The descending order of significanceisfrom left to right
(MSB equals bit index 31). Bit indexes of condition flagsare Z: 2, N: 1, C: 0.

Table 3-3. Notations used in Summary Tables

Modified: 18.02.2005 42/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide)

M nemonic and Description Formal definition (RTN)
operands
adddr,srl, sr2 R[dr] «<R[srl] + R[sr2]

addi dr, sr, smm

add signed integers

C[0] « zerdtegiarry

R[dr] «R[sr]+simm
C[0] « zerdtegiarry

addiu dr, sr, imm

addu dr, srl, sr2

add unsigned integers

R[dr] « R[sr[+Hmm
C[0] « zerdtegiarry

R[dr] «R[sr1HR[sr2]
C[0] « zercthegt carry

mulhi dr

evaluate upper 32 bits of previous

integer multiplication

R[dr] «—M64<63..32>

muli dr, sr, Ssimm

mulsdr, srl1, sr2

multiply signed integers

R[dr] «<R[srl] X simm

R[dr] < R[sr1] X R[sr2]

mulu dr, srl, sr2

multiply unsigned integers

R[dr] «<R[sr1] X R[sr2]

mulusdr, sr1, sr2

multiply unsigned integer with

R[dr] «R[srl] X R[sr2]

signed integer
muls 16dr, srl, sr2 multiply signed integers R[dr] «

(16-bit operands) R[sr1]<15..0> X R[sr2]<15..0>
mulu_16dr, sr1, sr2 multiply unsigned integers R[dr] «

(16-bit operands) R[sr1]<15..0> X R[sr2]<15..0>
mulus 16dr, srl, sr2 multiply unsigned integer with R[dr] «

signed integer (16-bit operands)

R[sr1]<15..0> X R[sr2]<15..0>

subdr, srl, sr2

subtract signed integers

R[dr] «R[srl] - R[sr2]
C[O] « zerdtegicarry

subudr, srl, sr2

subtract unsigned integers

R[dr] «R[srl] - R[sr2]
C[0] « zerdtegicarry

Table 3-4. Summary of integer arithmetic instructions

Modified: 18.02.2005

43/107

Version 0.7

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide)

Version 0.7

M nemonic and
operands

Description

Formal definition (RTN)

exb dr, sr,imm

extract byte from register

(imm =0) —»R[dr] «R[sr]<7..0>
(imm = 1) ->R[dr] «R[sr]<15..8>

(imm = 3) —>R[dr] «R[sr]<31..24>

exh dr, sr,imm

extract halfword from register

]

]
(imm=2) >R[dr] «R[sr]<23..16>

]

]

(imm = 0) —R[dr] < R[sr]<15..0>
(imm = 1) - R[dr] « R[sr]<31..16>

exbf dr,srl, sr2

exbfi dr, sr, imm1, imm2

extract arbitrary bit field from
register

L := R[sr2]<10..5>; P:= R[sr2]<4..0>;
R[dr] «<R[srl]<PL -1..P>

L:=immi; P:=
R[dr] «<R[sr1]<P+L - 1..P>

imm2;

Ili dr, imm

load lower part of register

R[dr] « 16@0#imm

lui dr, imm

load upper part of register

R[dr]<31..16> — imm

sext dr, srl, sr2

sexti dr, sr, imm

sign extend value in register

P:=R[sr2];
R[dr]<31..P> «—R[srl|<P>@(2 —P):
R[dr]<P-1..0> «—R[sr1]<P-1..0>

P:=imm;
R[dr]<31..P> —R[sr]|<P>@(2 —P):
R[dr]<P-1..0> «R[sr]<P —1..0>

conbdr,srl,sr2

concatenate bytes

R[dr] “«—
0@16 # R[sr1]<7..0> # R[sr2]<7..0>

conhdr,srl, sr2

concatenate halfwords

R[dr] — R[sr1]<15..0>
R[sr2]<15..0>

Table 3-5. Summary of byte and bit field manipulation instructions

Mnemonic and Description Formal definition (RTN)
operands
anddr,srl, sr2 o R[dr] «<R[sr1] OR[sr2]
bitwise AND
andi dr, sr, imm R[dr] «R[sr] Oimm
not dr, sr bitwise NOT R[dr] < = R[s]
ordr,srl, sr2 o R[dr] «<R[sr1] OR[sr2]
i i bitwise OR
oridr,sr,imm R[dr] < R[sr] Oimm
xor dr, srl, sr2 bitwise XOR R[dr] «<R[srl] O R[sr2]

Table 3-6. Summary of Boolean bitwise operation instructions

Modified: 18.02.2005

44/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Mnemonic
and Description Formal definition(RTN)
operands
bccr, simm (Clcr]<0> = 1) —»PC « PCHsimni0)
begt cr, smm (Cler]<2>=10C[cr]<1> = 0) »PC «PC{sim m#0)
belt cr, simm (Cler]<2> =10C[cr]<1> = 1) > PC «PCHsimn#0)
b , S - Clcr]<2> =1) -»PC « PCHsimm0
eqcr, smm branch on condition (Cler) —PC — PO(simmi0)
bgt cr, smm (Cl[er]<2> =0 0C[er]<1> = 0) —» PC « PCHsimn#0)
blt cr, simm (Clcr]<1> =1) - PC «—PCHsimn#0)
bnccr, simm (C[cr]<0>=0) —»PC « PCH(simni0)
bnecr, simm (Clcr]<2> =0) —» PC « PCHsimni#0)
jal smm (PSR<3> = 1) - INCREMENT=4;
(PSR<3> = 0) » INCREMENT=2;
jump and save return R[31] <« PCHNCREMENT;PC « PCHsinmi{)
jalr sr address (PSR<3>=1) - INCREMENT=,
(PSR<3> = 0) » INCREMENT=2;
R[31] < PCANCREMENT;PC «R[sr]
jmp simm) PC — PCHsinm#()
- Jump
jmpr sr PC —R[sr]

Table 3-7. Summary of jump instructions

M nemonic and
operands

Description

Formal definition (RTN)

cmpecer,srl, sr2

Compare contents of registers.
When evaluating carry flag,
unsigned comparison is used.

(R[sr1] = R[sr2]) — Cler]<2> «1
(R[sr1] # R[sr2]) — C[cr]<2> «0
(R[srl] < R[sr2]) —Cler]<1> «1
(R[sr1] 2 R[sr2]) — C[er]<1> «0
(R[sr1] - R[sr2] = 2%3) — C[er]<0> «—
1

(R[sr1] - R[sr2] < 2%3) — C[er]<0> «—
0

cmpi cr, sr, simm

Compare an immediate to
register operand. When
evaluating carry flag, unsigned

comparison is used.

(R[srl] = simm) — C[cr]<2> «1
(R[sr1] # simm) —C
(R[sr1] <simm) —»C

[

[er]<2> «0
[cr]<I> «1
(R[srl] = ssimm) — C[er]<1> «0
(R[sr1] - simm = 2%) — C[er]<0> «1

(R[sr1] - simm < 2%3) — C[er]<0> «0

Table 3-8. Summary of integer comparision instructions

Modified: 18.02.2005

45/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Mnemonic Description Formal definition(RTN)

and operands

didr,srl, sr2 P:= R[sr2]<5..0>; R[dr] «—R[sr1]<3l - P..0># 0@P;
Logical shift left. CLO] «— zeraegiearry

dli dr, sr,imm

P:=imm; R[dr] «<R[sr1]<3l - P..0>#0@P;
C[0] « zero# neg # carry

sradr,srl, sr2

srai dr, sr,imm

Arithmetic shift right.

P = R[sr2]<5..0>; R[dr] « R[sr1]<31>@PR[sr1]<31..P>

P = imm; R[dr] < R[sr1]<31>@PR[sr1]<31..P>

srldr,srl, sr2

srlidr, sr,imm

Logical shift right.

P:= R[sr2]<5..0>;, R[dI] < 0@PR [sr1]<31.P>

P:=imm; R[dr] < 0@P#R[sr1]<31..P>

Table 3-9. Summary of shift instructions

M nemonic and

Description Formal definition(RTN)
operands
Id dr, sr, smm Load word from memory. R[dr] « M[srtsimm]
st srl, sr2, smm Store word to memory M[sr2 + simm] «R[sr1]
mov dr, sr Register to register move R[dr] «R[sr]
movfcimm, dr, sr | Move datafrom coprocessor register. R[dr] «<R[sr]

dr — destination index at COFFEE core.

Sr—source index at coprocessor.

movtcimm, dr, sr

dr — destination index at coprocessor.

sr — source index at COFFEE core.

Move data to coprocessor register. R[dr] «<R[sr]

Table 3-10. Summary of load, store and data moving instructions

Modified: 18.02.2005

46/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide)

Version 0.7

Mnemonic
and Description Formal definition(RTN)
operands
chrsimm o) PSR<1> « imm<0>
Change visible register set.
PSR<2> « imm<1>
di Disable interrupts. PSR<4> «—0
e Enable interrupts. PSR<4> 1
swm imm Switch instruction decoding | (imm = 16) —PSR<3> « 0:PSR<5> «0:PSR<6> 0
mode. (imm =32) -»PSR<3> « [:PSR<5> «0:PSR<6> «0
reti] PC —HWSJ[0]<31..0>:
Return from interrupt
)) PSR — HWS[0]<39..32>:
service routine.
C[0] «—HWS[0]<42..40>
retu PC —R[31]
Return to user mode.
PSR « SPSR
scall SPSR « PSR;PSR<0> <« 0:PSR<1> « [:PSR<2> «
1
PSR<3> « 1:PSR<4> «0;
System call.
(SPSR<3> = 1) - INCREMENT=4;
(SPSR<3> = 0) - INCREMENT=2;
R[31] —PCANCREMENT;PC «—CCB[29]
rcon sr Restore condition register C «—R[sr]<23..0>
bank.
scon dr Save condition register R[dr] <« 0@8HC[TIHC[6HC[5#C[4]
bank. # C[3] #C[2] #C[1] #C[0]
trap imm CCB[21] « 1@3#imm:
CCB[22] « addresoftrapinstruction:
CCB[23] «+PSR:
Software exception. PSR<0> « 0:PSR<1> « 1:PSR<2> « [:PSR <3> «
1: PSR<4> «0:
PC — CCB[32]
See chapter 4.7.2 for details.
nop No operation. -

Table 3-11. Summary of miscellaneousinstructions

Modified: 18.02.2005

47/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

3.2

Integer Arithmetic Instructions

add

syntax: (cond, creg) add dreg, sregl, sreg2
add dr, sr

description: The contents of the source registers sregi are summed
together and the result is placed to the destination register dreg.
Exception is raised if the result exceeds 2*'-1 or falls below -2 In
16-bit mode the register dr is the second source and the destination.
notes. Operation is carried out using twos complement arithmetic.
flags: Z, N, C (creg0)

addi
syntax: (cond, creg) addi dreg, sregl, imm

addi dr, inmm
description: The immediate constant is sign extended and summed
with the contents of the source register sregl. The result is placed to
the destination register dreg. Exception is raised if the result exceeds
2°L.1 or falls below -2 In 16-bit mode the register dr is the first
source register and the destination.
notes. Operation is carried out using twos complement arithmetic. See
the permitted values for the immediate in the Table 3-14.
flags: Z, N, C (creg0)

addiu

syntax: (cond, creg) addiu dreg, sregl, inmm
addi u dr, imm

description: The immediate constant is zero extended and summed
with the contents of the source register sregl. The result is placed to
the destination register dreg. Overflow is ignored. In 16-bit mode the
register dr isthe first source register and the destination.

flags: Z, N, C (creg0)

notes. The register operand can aso be ‘negative’ even though the
instruction is supposed to be 'add with immediate, unsigned operands' .
The only difference to addi is that possible overflow condition is
ignored. In general addition procedure is exactly the same for both
kinds of operands (2C or unsigned) only the result is interpreted
differently (in this case by the programmer or compiler). Flags are set
as expected when using 2C arithmetic. See the permitted values for
theimmediate in the Table 3-14.

addu

syntax: (cond, creg) addu dreg, sregl, sreg?2
addu dr, sr

description: The contents of the source registers sregi are summed
together and the result is placed to the destination register dreg.

Modified: 18.02.2005 48/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Overflow is ignored. In 16 bit mode the register dr is the second
source and the destination.

flags: C, N, Z (CREG 0)

notes. Addition wider than 32 bits can be carried out as follows: Add
the lower 32 bits with addu and add one to the upper 32 bits if carry
was set in condition register creg0 as a result of the first addition. The
register operands can also be ‘negative’ even though the instruction is
supposed to be 'add, unsigned operands . The only differenced add is
that possible overflow condition is ignored. In general addition
procedure is exactly the same for both kinds of operands (2C or
unsigned) only the result is interpreted differently (in this case by the
programmer or compiler). Flags are set as expected when using 2C
arithmetic.

mulhi

syntax: (cond, creg) mul hi dreg

description: Returns the upper 32 bits of a 64-bit product based on
the previous instruction which has to be one of the instructions nul u,
mul s, mul i Or mul us.

notes. Seealso nul u, mul i , mul s and nul us.

muli
syntax: (cond, creg) muli dreg, sregl, inmm

muli dr, inmm
description: Multiplies the contents of the source register sregl with
the sign extended immediate imm and places the result to the
destination register dreg. The operands are assumed to be signed
integers (2C). In 16-bit mode dr is the source and the destination
register.
notes:. See mul hi for recovering the upper 32 bits of a product longer
than 32-bit. See the permitted values for the immediate in Table 3-14.

muls

syntax: (cond, creg) muls dreg, sregl, sreg2
mul s dr, sr

description: Multiplies the contents of the source register sregl with
the source register sreg2 and places the lower 32 bits of the result to
the destination register dreg. The operands are assumed to be signed
integers (2C). In 16-bit mode dr is the second source register and the
destination.

notes. See nul hi for recovering the upper 32 bits of a product longer
than 32-bit.

muls 16

syntax: (cond, creg) nuls_16 dreg, sregl, sreg2
muls_16 dr, sr

description: Multiplies the lower halfword of the source register
sregl with the lower halfword of the source register sreg2 and places

Modified: 18.02.2005 49/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

the result to the destination register dreg. The operands are assumed to
be signed integers (2C). In 16-bit mode dr is the second source
register and the destination.

mulu

syntax: (cond, creg) nulu dreg, sregl, sreg2
mul u dr, sr

description: Multiplies the contents of the source register sregl with
the source register sreg2 and places the lower 32 bits of the result to
the destination register dreg. The operands are assumed to be
unsigned integers). In 16-bit mode dr is the second source register and
the destination.

notes. See nul hi for recovering the upper 32 bits of a product longer
than 32-bit.

mulu_16

syntax: (cond, creg) nulu_16 dreg, sregl, sreg2
mulu_16 dr, sr

description: Multiplies the lower halfword of the source register
sregl with the lower halfword of the source register sreg2 and places
the result to the destination register dreg. The operands are assumed to
be unsigned integers. In 16-bit mode dr is the second source register
and the destination.

mulus

syntax: (cond, creg) mulus dreg, sregl, sreg2
mul us dr, sr

description: Multiplies the contents of the source register sregl with
the source register sreg2 and places the lower 32 hits of the result to
the destination register dreg. The operand in register sregl is assumed
to be an unsigned integer and the operand in register sreg2 is assumed
to be a signed integer. In 16-bit mode dr is the second source register
and the destination.

notes:. See mul hi for recovering the upper 32 bits of a product longer
than 32-bit.

mulus 16

syntax: (cond, creg) mulus_16 dreg, sregl, sreg2
mul us_16 dr, sr

description: Multiplies the lower halfword of the source register
sregl with the lower halfword of the source register sreg2 and places
the result to the destination register dreg. The operand in register
sregl is assumed to be an unsigned integer and the operand in register
sreg?2 is assumed to be a signed integer. In 16-bit mode dr is the
second source register and the destination.

sub

syntax: (cond, creg) sub dreg, sregl, sreg2
sub dr, sr

Modified: 18.02.2005 50/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

3.3

description: The contents of the source register sreg2 is subtracted
from the contents of the source register sregl and the result is placed
to the destination register dreg. Exception is raised if the result
exceeds 2*'-1 or falls below -2*'. In 16-bit mode dr is the second
source register and the destination.

notes: Operation is carried out using twos complement arithmetic
flags: Z,C, N

subu

syntax: (cond, creg) subu dreg, sregl, sreg2
subu dr, sr

description: The contents of the source register sreg2 is subtracted
from the contents of the source register sregl and the result is placed
to the destination register dreg. In 16-bit mode dr is the second source
register and the destination.

flags: Z,C,N

notes: Over/underflow isignored.

Byte and Bit Field Manipulation Instructions

conb

syntax: (cond, creg) conb dreg, sregl, sreg2
conb dr, sr

description: Concatenates the least significant bytes from the source
registers to form a halfword. The least significant byte from the
register sregl becomes the most significant byte of the halfword and
the least significant byte from the register sreg2 becomes the least
significant byte of the halfword. The resulting halfword is saved to the
destination register dreg. The upper hafword of the result is filled
with zeros. In 16-bit mode dr corresponds to the second source
register sreg2 (and the destination) and sr corresponds to sregl.

notes. Note that ordering of operands is different in 16-bit mode from
that of 32-bit mode.

conh

syntax: (cond, creg) conh dreg, sreg2, sregl
conh dr, sr

description: Concatenates the least significant halfwords from the
source registers to form a word. The least significant halfword from
the register sreg2 becomes the most significant halfword of the word
and the least significant halfword from the register sregl becomes the
least significant halfword of the word. The resulting word is saved to
the destination register dreg. In 16-bit mode dr corresponds to the
second source register sreg2 (and the destination) and sr corresponds
to sregl.

notes. Note that ordering of operands is different in 16-bit mode from
that of 32-bit mode.

Modified: 18.02.2005 51/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

exb

syntax: (cond, creg) exb dreg, sreg, imm

description: Extracts the byte specified by the immediate imm from
the source register sreg/sr and places it to the least significant end of
the destination register dreg/dr. The upper three bytes in the
destination register are cleared. The extracted byte is specified
according to the Table 3-12.

Contents of a source register
high end low byte
byte3 | byte2 bytel | byteD
0 byteO
1 bytel
2 byte2
3 byte3

Table 3-12. Extracted byte specification

notes. See the permitted values for the immediate in Table 3-14.

exbf

syntax: (cond, creg) exbf dreg, sregl, sreg2
exbf dr, sr

description: Operates like exbf i , but the two immediates defining the
extracted field are combined and read from the least significant end of
the source register sreg2: bits 10 down to 5 define the length of the
field and bits 4 down to O define the LSB position. In the 16-bit mode
dr isthe second source and the destination.

notes. Example

Suppose that the bitfield shown bellow should be extracted from
register RO shown in Figure 3-1 (could be for example a sub address
field in amessage frame).

Contents of RO

Xxxx | x| x] x x|l F]JTJE|L|D|Ix|x|x]x]x

MAS| 413121 fro]l 9|87 65141312711

Figure 3-1. Content of RO

Now the length of the bitfield is5 = 000101 and LSB positionisé =
00110. To extract the bitfield we have to place a constant 000101
00110 = 000 1010 0110 = 0A6h in second source register (say R2).
The following code could be used to place the result in R3:

Ili R2, 0Oa6h
exbf R3, RO, R2

Modified: 18.02.2005 52/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

If we assume that the length of the bitfield in question is contained in
register R1 and the LSB position isin register R2. The following code
could be used to extract the bitfield to R3:

/1 shift the length to bits 10 downto 5

slli RL, R1, 5

or R2, R2, R1 // conbine length and position
exbf R3, RO, R2

See also exbfi .

exbfi

syntax: exbfi dreg, sregl, inmml, im?

description: Extracts a bitfield of arbitrary length and position from
the source register sregl and placesit to the low end of the destination
register dreg. Bitfield length and position are defined by the
immediates imml and immz2 as follows: imm1 defines the length of the
bitfield. Immediate imm2 specifies the LSB position of the extracted
bitfield in the source register. If the extracted bitfield is shorter than
32 bits, the extra bit positions in the destination register are filled with
zZeros.

notes: Can be used only in 32-bit mode. This instruction cannot be
executed conditionally. See the permitted values for the immediate in
Table 3-14.

exh

syntax: (cond, creg) exh dreg, sregl, inm

description: Extracts the halfword specified by the immediate imm
from the source register sregl/sr and places it to the least significant
end of the destination register dreg/dr. The upper hafword in the
destination register is cleared. If imm = O, then the least significant
halfword is extracted, otherwise the most significant halfword is
extracted.

[li

syntax: I'li dreg, inmm

description: Loads the lower halfword of the destination register dreg
with the immediate imm. The upper half of the destination register is
cleared.

notes: Can be used only in 32-bit mode. This instruction cannot be
executed conditionally. See the permitted values for the immediate in
Table 3-14.

[ui

syntax: lui dreg, imm

description: Loads the upper halfword of the destination register dreg
with the immediate imm. The lower half of the destination register is
preserved.

Modified: 18.02.2005 53/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

3.4

notes. Can be used only in 32-bit mode. This instruction cannot be
executed conditionally. See the permitted values for the immediate in
Table 3-14.

sext

syntax: (cond, creg) sext dreg, sregl, sreg2
sext dr, sr

description: Works as sexti, but the position of the sign bit is
evauated using the five least significant bits from the source register
sreg2. In 16-bit mode dr is the second source register and the
destination.

notes. See also sexti .

sexti

syntax: (cond, creg) sexti dreg, sreg, inmm

sexti dr, imm
description: Sign extends the operand in the source register sreg and
places the result to the destination register dreg. The position of the
sign bit is specified by the immediate imm (O corresponds to LSB and
31 corresponds to MSB). In 16-bit mode dr is the source register and
the destination.
notes. See the permitted values for the immediate in Table 3-14.

Boolean Bitwise Operation Instructions

and

syntax: (cond, creg) and dreg, sregl, sreg2
and dr, sr

description: Bitwise Boolean AND operation is performed to the
contents of the source registers sregi. The result is placed to the
destination register dreg.In 16-bit mode the register dr is the second
source and the destination.

andi

syntax: (cond, creg) andi dreg, sregl, imm

andi dr, inmm
description: The immediate constant is zero extended. Bitwise
Boolean AND operation is performed to the extended immediate and
the contents of the source register sregl. The result is placed to the
destination register dreg. In 16 bit mode the register dr is the register
source and the destination.
notes. See the permitted values for the immediate in Table 3-14.

not

syntax: (cond, creg) not dreg, sregl

description: Performs a bitwise Boolean NOT operation to the
contents of the source register sregl/sr and places the result to the
destination register dreg/dr.

Modified: 18.02.2005 54/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

3.5

or

syntax: (cond, creg) or dreg, sregl, sreg2
or dr, sr

description: Performs a bitwise Boolean OR operation to the contents
of the source registers sregi and places the result to the destination
register dreg. In 16-bit mode dr is the second source and the
destination register.

ori
syntax: (cond, creg) ori dreg, sregl, inm

ori dr, imm
description: Performs a bitwise Boolean OR operation to the contents
of the source register sregl and zero extended immediate imm. The
result is placed to the destination register dreg. In 16-bit mode dr is
the source and the destination register.
notes. See the permitted values for the immediate in Table 3-14.

Xxor

syntax: (cond, creg) xor dreg, sregl, sreg2
xor dr, sr

description: Performs a bitwise XOR operation to the contents of the
source registers sregl and sreg2. Theresult is placed to the destination
register dreg. In 16-bit mode the bitwise XOR is performed to the
contents of dr and sr and the result is placed into dr.

Branch (Conditional Jump) Instructions

bc
syntax: bc creg, imm

bc imm
description: If the carry flag in the condition register creg is high,
program execution branches to target address specified by the
immediate imm. The target address is calculated as follows: The
immediate offset imm is shifted left by one bit and sign extended. The
sign extended offset is added to the contents of the program counter
PC. In 16-bit mode the condition register used is allways cregO.
notes. This instruction cannot be executed conditionally. The
instruction following this instruction is always executed (branch dlot).
The branch offset is calculated relative to the instruction in the slot.
See the permitted values for theimmediate in Table 3-14.

begt
syntax: begt creg, inm

begt imm
description: If the flags in the condition register creg indicate that the
condition eqt (equal or greater than) is true, program execution
branches to target address specified by the immediate imm. The target

Modified: 18.02.2005 55/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

address is calculated as follows. The immediate offset imm is shifted
left by one bit and sign extended. The sign extended offset is added to
the contents of the program counter PC. In 16-bit mode the condition
register used is aways cregOQ.

notes. This instruction cannot be executed conditionally. The
instruction following this instruction is always executed (branch slot).
The branch offset is calculated relative to the instruction in the slot.
See the permitted values for the immediate in Table 3-14.

belt

syntax: belt creg, inmm
belt imm

description: If the flags in the condition register creg indicate that the
condition et (equal or less than) is true, program execution branches
to target address specified by the immediate imm. The target addressis
calculated as follows: The immediate offset imm is shifted left by one
bit and sign extended. The sign extended offset is added to the
contents of the program counter PC. In 16-bit mode the condition
register used is aways creg0

notes. This instruction cannot be executed conditionally. The
instruction following this instruction is always executed (branch slot).
The branch offset is calculated relative to the instruction in the slot.
See the permitted values for theimmediate in Table 3-14.

beq
syntax: beq creg, imm

beq i mm
description: If the flags in the condition register creg indicate that the
condition eq (equal) is true, program execution branches to target
address specified by the immediate imm. The target address is
calculated as follows: The immediate offset imm is shifted left by one
bit and sign extended. The sign extended offset is added to the
contents of the program counter PC. In 16-bit mode the condition
register used is aways cregO.
notes. This instruction cannot be executed conditionally. The
instruction following this instruction is always executed (branch slot).
The branch offset is calculated relative to the instruction in the slot.
See the permitted values for the immediate in Table 3-14.

bgt
syntax: bgt creg, inmm
bgt imm

description: If the flags in the condition register creg indicate that the
condition gt (greater than) is true, program execution branches to
target address specified by the immediate imm. The target address is
calculated as follows: The immediate offset imm is shifted left by one
bit and sign extended. The sign extended offset is added to the

Modified: 18.02.2005 56/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

contents of the program counter PC. In 16-bit mode the condition
register used is aways creg0.

notes. This instruction cannot be executed conditionally. The
instruction following this instruction is always executed (branch slot).
The branch offset is calculated relative to the instruction in the slot.
See the permitted values for the immediate in Table 3-14.

blt

syntax: blt creg, inmm
blt imm

description: If the flags in the condition register creg indicate that the
condition It (less than) is true, program execution branches to target
address specified by the immediate imm. The target address is
calculated as follows: The immediate offset imm is shifted left by one
bit and sign extended. The sign extended offset is added to the
contents of the program counter PC. In 16-bit mode the condition
register used is aways cregO.

notes. This instruction cannot be executed conditionally. The
instruction following this instruction is always executed (branch slot).
The branch offset is calculated relative to the instruction in the slot.
See the permitted values for theimmediate in Table 3-14.

bne

syntax: bne creg, inmm
bne i mMm

description: If the flags in the condition register creg indicate that the
condition ne (not equal) is true, program execution branches to target
address specified by the immediate imm. The target address is
calculated as follows: The immediate offset imm is shifted left by one
bit and sign extended. The sign extended offset is added to the
contents of the program counter PC. In 16-bit mode the condition
register used is aways creg0.

notes. This instruction cannot be executed conditionally. The
instruction following this instruction is always executed (branch dlot).
The branch offset is calculated relative to the instruction in the slot.
See the permitted values for the immediate in Table 3-14.

bnc

syntax: bnc creg, inmm
bnc i mm

description: If the carry flag in the condition register creg is low,
program execution branches to target address specified by the
immediate imm. The target address is calculated as follows: The
immediate offset imm is shifted left by one bit and sign extended. The
sign extended offset is added to the contents of the program counter
PC. In 16-bit mode the condition register used is always cregO.

notes. This instruction cannot be executed conditionally. The
instruction following this instruction is always executed (branch dlot).

Modified: 18.02.2005 57/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

The branch offset is calculated relative to the instruction in the Slot.
See the permitted values for theimmediate in Table 3-14.

3.6 Jump Instructions

jal

syntax: jal inmm

description: Program execution branches to target address specified
by the immediate imm. The target address is calculated as follows:
The immediate offset imm is shifted |eft by one bit and sign extended.
The sign extended offset is added to the contents of the program
counter PC. Link address is saved to register R31/SR31. The link
address is the address of the next instruction after branch slot
instruction.

notes. This instruction cannot be executed conditionally. The
instruction following this instruction is always executed (branch slot).
The jump offset is calculated relative to the instruction in the slot. See
the permitted values for the immediate in Table 3-14.

jalr

syntax: (cond, creg) jalr sregl

description: Program execution branches to target address specified
by the contents of the source register sregl/sr. Link address is saved
to register R31/SR31. The link address is the address of the next
instruction after branch slot instruction.

notes: The instruction following this instruction is aways executed
(branch dlot). Conditional jumps (branches) that can reach the whole
address space can be synthesized by executing this instruction
conditionally. Note that the address in the source register should be
aligned to word boundary if in 32-bit mode or halfword boundary if in
16-bit mode.

jmp

syntax: jnmp i mm

description: Program execution branches to target address specified
by the immediate imm. The target address is calculated as follows:
The immediate offset imm is shifted left by one bit and sign extended.
The sign extended offset is added to the contents of the program
counter PC.

notes. This instruction cannot be executed conditionally. The
instruction following this instruction is always executed (branch dlot).
The jump offset is calculated relative to the instruction in the slot. See
the permitted values for theimmediate in Table 3-14.

jmpr
syntax: (cond, creg) jnpr sregl

Modified: 18.02.2005 58/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

3.7

3.8

description: Program execution branches to target address specified
by the contents of the source register sregl/sr.

notes: The instruction following this instruction is always executed
(branch dlot). Conditional jumps (branches) that can reach the whole
address space can be synthesized by executing this instruction
conditionally. Note that the address in the source register should be
aligned to word boundary if in 32-bit mode or halfword boundary if in
16-bit mode.

Integer Comparison Instructions

cmp
syntax: cnp creg, sregl, sreg2
cmp srl, sr2

description: The contents of the source registers sregi/sri are
compared as if they were signed numbers. The operation is logically
done by subtracting the contents of sreg2/sr2 from the contents of
sregl/srl. Flags N, Z and C are set or cleared accordingly and saved
to the condition register creg. In 16-bit mode the condition register is
always cregO.

flags: N, Z, C

notes: The logical subtraction sregl- sreg2/srl - sr2 does not
overflow, that is, the flags are always set correctly independently of
the result of the subtraction. This instruction cannot be executed
conditionaly.

cmpi
syntax: cnpi creg, sregl, imm

cnpt sr, 1mm
description: The immediate constant imm is sign extended and
compared to the contents of the source register sregl/srl as if they
were signed numbers. The operation is logically done by subtracting
the immediate imm from the contents of sregl/srl. Flags N, Z and C
are set or cleared accordingly and saved to the condition register creg.
In 16 bit mode the condition register is always cregO.
flags: N, Z,C
notes: The logical subtraction sregl- imm/sr - imm does not overflow,
that is, the flags are always set correctly independently of the result of
the subtraction. This instruction cannot be executed conditionally. See
the permitted values for theimmediate in Table 3-14.

Shift Instructions

S|

syntax: (cond, creg) sll dreg, sregl, sreg2
sl dr sr

Modified: 18.02.2005 59/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

description: Performs the logical shift left to the contents of the
source register sregl/sr and places the result to the destination register
dreg/dr. The six least significant bits in the source register sreg2
specify the amount of shift. The last ‘dropped’ bit (bit 32) is saved as
carry flag in register cregO. In 16-bit mode dr is the second source
register and the destination.

flags: C, N, Z

notes: If the unsigned integer formed by the six least significant bits
in the source register sreg2 imply a shift of more than 32 positions
then the result will be a shift of 32 positions (which is zero).

dlli
syntax: (cond, creg) slli dreg, sregl, inmm

slli dr, imm
description: Performs the logical shift left to the contents of the
source register sregl and places the result to the destination register
dreg. The immediate imm specifies the amount of shift. The last
‘dropped’ bit (bit 32) is saved as carry flag in register creg0. In 16-bit
mode dr is the source register and the destination.
notes. See the permitted values for the immediate in Table 3-14.

flags: C,N, Z

Sra

syntax: (cond, creg) sra dreg, sregl, sreg2
sra dr sr

description: Performs the arithmetic shift right to the contents of the
source register sregl/sr and places the result to the destination register
dreg/dr. The six least significant bits in the source register sreg2
specify the amount of shift. In 16-bit mode dr is the second source
register and the destination.

notes. If the unsigned integer formed by the six least significant bits
in the source register sreg2 imply a shift of more than 32 positions
then the result will be a shift of 32 positions.

srai
syntax: (cond, creg) srai dreg, sregl, imm

srai dr, inmm
description: Performs the arithmetic shift right to the contents of the
source register sregl and places the result to the destination register
dreg. The immediate imm specifies the amount of shift. In 16-bit
mode dr is the source register and the destination.
notes. See the permitted values for the immediate in Table 3-14.

srl

syntax: (cond, creg) srl dreg, sregl, sreg2
srl dr sr

description: Performs the logical shift right to the contents of the
source register sregl/sr and places the result to the destination register

Modified: 18.02.2005 60/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

dreg/dr. The six least significant bits in the source register sreg2
specify the amount of shift. In 16-bit mode dr is the second source
register and the destination.

notes. If the unsigned integer formed by the six least significant bits
in the source register sreg2 imply a shift of more than 32 positions
then the result will be a shift of 32 positions.

srli
syntax: (cond, creg) srli dreg, sregl, imm

srli dr, imm
description: Performs the logical shift right to the contents of the
source register sregl and places the result to the destination register
dreg. The immediate imm specifies the amount of shift. In 16-bit
mode dr is the source register and the destination.
notes. See the permitted values for the immediate in Table 3-14.

3.9 Memory Load and Store, Data Moving Instructions

ld

syntax: (cond, creg) Id dreg, sregl, imm

description: Loads a 32-bit data word from memory to the destination
register dreg/dr. The address of the data is calculated as follows: The
immediate offset imm is sign extended and added to the contents of
the source register sregl/sr. The address is not auto-aligned (two least
significant bits of the resulting address are driven to address bus).
notes. The result of the address calculation doesn't have to be aligned
to word boundary. The two least significant bits can be used for
example as byte index if narrower bus is used. Also the smallest
addressable unit can be 32-bit word giving 16GB address range! See
the permitted values for theimmediate in Table 3-14.

mov

syntax: (cond, creg) nov dreg, sregl

description: Copies the contents of the source register sregl/sr to the
destination register dreg/dr.

st

syntax: (cond, creg) st sreg2, sregl, imm

description: Stores the data in the source register sreg2/sr2 to
memory location whose address is calculated as follows: The
immediate offset imm is sign extended and added to the contents of
the source register sregl/sr1l. The address is not auto-aligned (two
least significant bits of the resulting address are driven to address bus).
notes. The two least significant bits can be used for example as byte
index if narrower bus is used. Also the smallest addressable unit can
be 32-bit word giving 16GB address range! See the permitted values
for theimmediate in Table 3-14.

Modified: 18.02.2005 61/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

3.10

3.11

Coprocessor instructions

movfc

syntax: (cond, creg) movfc imm, dreg, cp_sreg

description: Copies the contents of one of the registers in the
coprocessor number imm to the destination register dreg/dr. The
immediate imm is used to specify one of the four possible
coprocessors: 0, 1, 2 or 3. Cp_reg is an index to the coprocessor
register file.

movtc

syntax: (cond, creg) movtc imm, cp_dreg, sregl

description: Copies the contents of the source register sregl/sr to the
coprocessor register cp_dreg. The immediate imm is used to specify
one of the four possible coprocessors: 0, 1, 2 or 3.

Miscellaneous Instructions

chrs

syntax: chrsimm

description: Specifies which register set is used for reading or
writing. The source register(s) and the destination register don't have
to reside in the same set. The register sets to be used are specified by
the immediate imm according to the Table 3-13.

imm Write Read

0 (00b) Setl (user set) Setl (user set)

1 (01b) Setl (user set) Set 2 (superuser set)
2 (10b) Set 2 (superuser set) | Setl (user set)
3(11b) Set 2 (superuser set) | Set 2 (superuser set)

Table 3-13. Register set definition for writing and reading

notes. When execution in the super user mode begins the default
register set for reading and writing is the super user set (set 2). When
returning back to the user mode the default register set is the user set
(set 1). This command is allowed only in super user mode. An
exception is raised on an attempt to use this command in user mode.
As aresult, the user cannot see the register set intended only for super
user. Not allowed to be executed conditionally.

di

syntax: di

description: Disables maskable interrupts.

notes. Not permitted to be executed conditionally. An exception is
raised on an attempt to use this command in user mode. See Section

Modified: 18.02.2005 62/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

1.4 and Section 1.5 about exceptions and interrupts for definitions and
details.

el

syntax: ei

description: Enables maskable interrupts.

notes. Not permitted to be executed conditionally. An exception is
raised on an attempt to use this command in user mode. See Section
1.4 and Section 1.5 about exceptions and interrupts for definitions and
details.

reti

syntax: reti

description: Used for returning from an interrupt service routine.
Loads PC, CRO and PSR from the hardware stack and signals to the
external (and internal) interrupt handler that the servicing of the last
interrupt request was compl eted.

notes. Not allowed to be executed conditionally. Ret i instruction has
to be followed by two nops!

retu

syntax: retu

description: Used for returning or moving from system
code/superuser mode to user mode. Execution of user code starts from
a address in register PR31. Status flags are copied from the register
SPSR. (They should be set appropriately before issuing retu).
Available only in superuser mode.

scall

syntax: (cond, creg) scall

description: System call transfers the processor to the superuser mode
and execution of instructions begins at address defined in register
SYSTEM_ADDR. The link address is saved in to the register PR31
(link register of SET2). The link address is the address of the
instruction following nop (see notes below). The state of the processor
beforescal | iscopied to the register SPSR.

notes. When transferring the control to superuser code the default
settings are 32-bit mode, interrupts disabled and superuser register set
(both read and write). As with branches and jumps also thisinstruction
has a branch dot, which in this case has to be filled with a nop
instruction. Seer et u.

swm
syntax: swm i nm

description: Changes the instruction decoding mode. The value of the
immediate imm specifies the mode: imm = 16 => switch to 16-bit

Modified: 18.02.2005 63/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

3.12

mode, imm = 32=> switch to 32-bit mode. Other values are reserved
for future extensions.

flags: IL

notes: This instruction is not allowed to be executed conditionally.
See the permitted values for the immediate in Table 3-14. This
instruction has to be followed by two nop instructions!

nop
syntax: nop

description: ldle command that does not alter the state of the
processor.

notes. See the list of instructions which require a succeeding nop.
This instruction cannot be executed conditionally (even if it could it
wouldn’t have any effect anyway).

rcon
syntax: rcon sregl

description: Restores the contents of al the condition registers from
the source register sregl.

notes. Thisinstruction is not allowed to be executed conditionaly.

scon
syntax: scon dreg

description: Saves the contents of all the condition registers to the
(low end of) destination register dreg.

notes. Thisinstruction is not allowed to be executed conditionaly.

trap

syntax: trap i nm

description: Generates a software trap. Execution is started at the
address of exception handler routine defined in the CCB register
EXCEP_ADDR. The address of the trap instruction is saved in the
EPC register and the exception code in exception cause register
(ECS).

notes: See Section 1.4 to get more information about exceptions and
about the code.

Pseudo Instructions

dec

syntax: dec dr

description: Word decrement.
pseudo code:

32-bit mode:
addiu dr, dr, -1

16-bit mode:

Modified: 18.02.2005 64/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

addiu dr, -1

decb

syntax: decb dr

description: Byte decrement = modulo 256 decrement.
pseudo code:

32-bit mode:
addiu dr, dr, -1
andi dr, dr, Oxff

16-bit mode:
addiu dr, -1
slli dr, 24
srli dr, 24
inc

syntax: i nc dr
descrption: Word increment.

pseudo code:
32-bit mode:

addiu dr, dr, 1
16-bit mode:

addiu dr, 1
inch

syntax: incb dr
description: Byte increment = modulo 256 increment.
pseudo code:

32-bit mode:
addiu dr, dr, 1
andi dr, dr, Oxff

16-bit mode:
addiu dr, 1
slli dr, 24
srli dr, 24
Idra

syntax: I dra dr, limm
description: Load register with address.
pseudo code:

32-bit mode:
[1i dr, imm & Oxffff
lui dr, imm>> 16

16-bit mode
xor dr, dr
ori dr, imm>> 25
slli dr, 7

ori dr, (inm>> 18) & Ox7f

Modified: 18.02.2005 65/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

slli dr, 7
ori dr, (inmm>> 11) & Ox7f
slli dr, 7
ori dr, (imm>> 4) & Ox7f
slli dr, 4

ori dr, imm & Oxf

[dri
syntax: I dri dr, limm
description: Load register with long immediate or constant.
pseudo code:
32-bit mode;

[1i dr, imm& Oxffff

if(imm > 65535)

lui dr, inmm>> 16

16-bit mode:
if(limm== 0)
xor dr, dr
else
{
if(imm[31:25] != 0)
{
ori dr, imm>> 25
slli dr, 7
if(imm[31:18] != 0)
{
ori dr, (imm>> 18) & Ox7f
slli dr, 7
}
if(imm[31:11] != 0)
{
ori dr, (imm>> 11) & Ox7f
slli dr, 7
}
if(imm[31:4] '= 0)
{
ori dr, (imm>> 4) & Ox7f
slli dr, 4
I .
ori dr, imm & Oxf
}

Modified: 18.02.2005 66/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Per mitted valuesfor imm

instruction 16 bit 32 hit notes
conditional unconditional
addi 280201 28 2% 21 21
addiu 0..2"11 0..2%1 0..2%1
andi 0..2"-1 0..2%1 0..2%1
bxx 1 2°..2%1 - 2% 2% Should be even in
32bit mode
chrs 0...3 - 0.3
cmpi -2°..2%1 - 21 2%
exb 0..3 0..3 0.3
exbfi 3 - - imm1:0..32 Only 32 bit mode
imm2; 0...31
exh Oor1l Oor1l Oorl
jal 29..2%1 - 2% ..2*.1 Shouldbeevenin
32bit mode
jmp 2°..2%1 - -2 ..2°*1 Shouldbeevenin
32bit mode
Id -8..7 28..2%1 21 21
i - - 0..2%1 Only 32 bit mode
(or
-2 2
Ui - - 0..2%1 Only 32 bit mode
(or
-2 2k
movfc 0..3 0.3 0.3
movtc 0.3 0.3 0.3
muli 280201 2828 21 2%
ori 0..2"11 0..2%1 0..2%1
sexti 0..31 0..31 0..31
dli 0...32 0...32 0...32
srai 0..32 0..32 0..32
srli 0...32 0...32 0...32
st -8..7 28..2%1 2121
swm? 16 or 32 - 16 or 32
trap - - 0..31

Table 3-14. Permitted values for immediate constant

Modified: 18.02.2005

67/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide)

Version 0.7

assembly machine instructions
instruction/variant 16 bit output 32 bit output
add dr, srl, sr2 if (sr2!=dr) add dr, srl, sr2
mov dr, sr2
add dr, sr1
add dr, sr add dr, sr add dr, sr, dr
addi dr, sr1, imm if (srl!=dr) addi dr, sr1, imm
mov dr, sr1
addi dr, imm
addi dr, imm addi dr, imm addi dr, dr, imm
addiu dr, sr1, imm if (srl!=dr) addiu dr, sr1, imm
mov dr, srl

addiu dr, imm

addiu dr, imm

addiu dr, imm

addiu dr, dr, imm

addu dr, srl, sr2 if (sr2!=dr) addu dr, srl, sr2
mov dr, sr2
addu dr, sr1
addu dr, sr addu dr, sr addu dr, sr, dr
and dr, srl, sr2 if (sr2!1=dr) and dr, srl, sr2
mov dr, sr2
and dr, srl
and dr, sr and dr, sr and dr, s, dr
andi dr, srl, imm if (sr1!=dr) andi dr, srl, imm
mov dr, srl
andi dr, imm
andi dr, imm andi dr, imm andi dr, dr, imm
bccr, imm if (cr == c0) bccr, imm
bcimm
else
error
bcimm bcimm bc c0, imm
begt cr, imm if (cr == c0) begt cr, imm
begt imm
else
error
begt imm begt imm begt cO, imm
belt cr, imm if (cr == c0) belt cr, imm
belt imm
else
error
belt imm belt imm belt cO, imm
beq cr, imm if (cr == c0) beq cr, imm
beq imm
else
error
beg imm beg imm beg cO, imm

Modified: 18.02.2005

68/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

bgt cr, imm if (cr == c0) bgt cr, imm
bgt imm
else
error
bgt imm bgt imm bgt cO, imm
blt cr, imm if (cr == c0) blt cr, imm
blt imm
else
error
blt imm blt imm blt c0, imm
bnc cr, imm if (cr == c0) bnc cr, imm
bncimm
else
error
bncimm bncimm bnc c0, imm
bnecr, imm if (cr == c0) bnecr, imm
bneimm
else
error
bneimm bneimm bne cO, imm
chrsimm chrsimm chrsimm
cmp cr, srl, sr2 if (cr == c0) cmp cr, srl, sr2
cmp srl, sr2
else
error
cmp s, sr2 cmp s, sr2 cmp c0, s, sr2
cmpi cr, srl, imm if (cr == c0) cmpi cr, srl, imm

cmpi srl, imm
else

error
cmpi s, imm cmpi sr, imm cmpi c0, s, imm
conb dr, sr1, sr2 if (sr2!=dr) conb dr, sr1, sr2
mov dr, sr2
conb dr, sr1
conb dr, s conb dr, sr conb dr, dr, sr
conh dr, sr
dlidr, 8
srlidr, 16
conh dr, sr2, sr1 if (sr2!1=dr) conh dr, sr2, sr1
mov dr, sr2
conh dr, srl
conh dr, sr conh dr, sr conh dr, dr, sr
decb dr addi dr, -1 addi dr, dr, -1
dli dr, 24 andi dr, dr, Oxff
srli dr, 24
decdr addi dr, -1 addi dr, dr -1
di di di

Modified: 18.02.2005

69/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide)

Version 0.7

e e e
exb dr, sr, imm exb dr, sr, imm exb dr, sr, imm
exb dr, imm exb dr, dr, imm exb dr, dr, imm
exbf dr, srl, sr2 if (sr2!=dr) exbf dr, srl, sr2
mov dr, sr2
exbf dr, sr1
exbf dr, sr exbf dr, sr exbf dr, sr, dr
exbfi dr, sr1, imml, imm2 | if (sr1!= dr) exbfi dr, srl, immi,
mov dr, srl imm?2

dli dr, (32 — (imm1 + imm2))
srlidr, (32—imml)

exbfi dr, imm1, imm?2

dli dr, (32 — (imm1 + imm2))
srlidr, (32—imml)

exbfi dr, dr,
imm2

imm1,

exh dr, sr, imm

exh dr, sr, imm

exh dr, sr, imm

exh dr, imm exh dr, dr, imm exh dr, dr, imm

incb dr addiu dr, 1 addiu dr, dr, 1
dli dr, 24 andi dr, dr, Oxff
sli dr, 24

incdr addiu dr, 1 addiu dr, dr 1

jal imm jal imm jal imm

jalr sr jalr sr jalr sr

jmp imm jmp imm jmp imm

jmpr s jmpr s jmpr s

Id dr, sr, imm Id dr, sr, imm Id dr, s, imm

Id dr, sr Id dr, sr, O Id dr, s, O

Idri dr, limm xor dr, dr [li dr, [imm & Oxffff

if (limm[31:25] '= 01
ori dr, limm>> 25
dlidr, 7

}
if (limm[31:18] !'= 0){

ori dr, (limm >> 18) &
Ox7f

dlidr, 7

}
if (limm[31:11] !'= 01
ori dr, (limm >> 11) &
Oox7f
dlidr, 7
}

if (limm[31:4] != 0){
ori dr, (limm >> 4) & Ox7f
dli dr, 4
}
if (limm[3:0] = 0){
ori dr, limm & Oxf
}

if (limm > 65535)
[ui dr, limm >> 16

Modified: 18.02.2005

70/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide)

Version 0.7

[dradr, limm

xor dr, dr

ori dr, limm >> 25
dlidr,7

ori dr, (limm >> 18) & Ox7f
dlidr,7

ori dr, (limm >> 11) & Ox7f
dlidr, 7

ori dr, (limm >> 4) & Ox7f
dlidr, 4

ori dr, limm & Oxf

[i dr, limm & Oxffff
[ui dr, limm >> 16

[dradr, limm + imm

xor dr, dr

ori dr, limm>> 25

dlidr,7

ori dr, (limm>> 18) & Ox7f
dlidr,7

ori dr, (limm>>11) & Ox7f
dlidr, 7

ori dr, (limm >> 4) & Ox7f
dlidr, 4

ori dr, limm & Oxf

addi dr, imm

[i dr, limm & Oxffff
[ui dr, limm >> 16
addi dr, imm

[li dr, imm

xor dr, dr

ori dr, (imm>>9)

dlidr, 7

ori dr, ((imm >> 2) & 0x7f)
dlidr, 2

ori dr, (imm & 0x3)

[li dr, imm

[ui dr, imm

swm 32
nop

nop

align 2
.code32
[ui dr, imm
swm 16
nop

nop
.codel6

[ui dr, imm

mov dr, srl

mov dr, srl

mov dr, srl

movfc imm, dr, cpr

movfc imm, dr, cpr

movfc imm, dr, cpr

movtc imm, cpr, srl

movtc imm, cpr, srl

movtc imm, cpr, srl

mulhi dr mulhi dr mulhi dr
muli dr, sr1, imm if (srl!=dr) muli dr, sr1, imm
mov dr, srl
muli dr, imm
muli dr, imm muli dr, imm muli dr, dr, imm

Modified: 18.02.2005

71/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

mulsdr, sr1, sr2 if (sr2!1=dr) mulsdr, sr1, sr2
mov dr, sr2
mulsdr, srl
mulsdr, sr mulsdr, sr mulsdr, sr, dr
muls 16 dr, srl, sr2 if (sr2!1=dr) muls 16 dr, srl, sr2
mov dr, sr2

muls 16 dr, sr1

muls 16 dr, sr

muls 16 dr, sr

muls 16 dr, sr, dr

mulu dr, sr1, sr2 if (sr2!=dr) mulu dr, srl, sr2
mov dr, sr2
mulu dr, srl
mulu dr, sr mulu dr, sr mulu dr, dr, sr
mulu_16dr, srl, sr2 if (sr2!1=dr) mulu_16dr, srl, sr2
mov dr, sr2

mulu 16dr, srl

mulu 16 dr, sr

mulu 16 dr, sr

mulu 16 dr, sr, dr

mulusdr, sr1, sr2 if (sr2!1=dr) mulusdr, srl, sr2
mov dr, sr2
mulusdr, srl1
mulusdr, sr mulu dr, sr mulusdr, dr, sr
mulsu dr, sr mulusdr, sr mulusdr, sr, dr
mulus 16 dr, srl, sr2 if (sr2!=dr) mulus 16 dr, srl, sr2
mov dr, sr2
mulus 16 dr, srl
mulus 16 dr, sr not allowed not allowed
mulsu 16 dr, sr mulus 16 dr, sr mulus 16 dr, sr, dr
nop nop nop
not dr, srl not dr, srl not dr, srl
or dr, srl, sr2 if (sr2!1=dr) or dr, srl, sr2
mov dr, sr2
or dr, sr1
or dr, sr or dr, sr or dr, sr, dr
oridr, srl, imm if (srl!=dr) oridr, srl, imm
mov dr, srl
ori dr, imm
ori dr, imm ori dr, imm ori dr, dr, imm
rcon sr rcon sr rcon sr
r eti r eti r eti
retu retu retu
scall scall scall
scon dr scon dr scon dr
sext dr, sr1, sr2 if (sr2!1=dr) sext dr, srl, sr2
mov dr, sr2
sext dr, srl
sext dr, s sext dr, sr sext dr, sr, dr

Modified: 18.02.2005

72/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

sexti dr, srl, imm if (srl!=dr) sexti dr, srl, imm
mov dr, srl
sexti dr, imm
sexti dr, imm sexti dr, imm sexti dr, dr, imm
dl dr, sr1, sr2 if (sr2!1=dr) dl dr, sr1, sr2
mov dr, sr2
dldr, sr1
dl dr, sr gl dr, sr dl dr, sr, dr
dli dr, sr1, imm if (sr1!=dr) dli dr, sr1, imm
mov dr, srl
dli dr, imm
dli dr, imm dli dr, imm dli dr, dr, imm
sradr, srl, sr2 if(sr2!=dr) sradr, srl, sr2
mov dr, sr2
sradr, srl
sradr, sr sradr, sr sradr, sr, dr
srai dr, srl, imm if (srl!=dr) srai dr, srl, imm
mov dr, srl
srai dr, imm
srai dr, imm srai dr, imm srai dr, dr, imm
srldr, sr1, sr2 if (sr2!1=dr) srldr, srl, sr2
mov dr, sr2
srldr, srl
srldr, sr srldr, sr srl dr, sr, dr
srlidr, sr1, imm if (srl!=dr) srlidr, sr1, imm
mov dr, srl
srli dr, imm
srli dr, imm srli dr, imm srli dr, dr, imm
st sr2, srl, imm st sr2, srl, imm st sr2, srl, imm
st sr2, srl stsr2,sr1,0 stsr2,s1,0
sub dr, srl, sr2 if (sr2!=dr) sub dr, srl, sr2
mov dr, sr2
sub dr, sr1
sub dr, s subu dr, sr sub dr, dr, sr
not dr, dr
addi dr, 1
subu dr, sr1, sr2 if (sr2!1=dr) subu dr, sr1, sr2
mov dr, sr2
subu dr, sr1
subu dr, sr subu dr, sr subu dr, dr, sr
not dr, dr
addiu dr, 1
swm imm swm imm swm imm
trap imm trap imm trap imm

Modified: 18.02.2005

73/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide)

Version 0.7

xor dr, sr1, sr2 if (sr2!=dr) xor dr, sr1, sr2
mov dr, sr2
xor dr, sr1
xor dr, sr xor dr, sr xor dr, sr, dr

Table 3-15. Instruction mapping in 16-bit and 32-bit mode

Modified: 18.02.2005

74/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

COPROCESSOR INSTRUCTION SET

This chapter describes the machine instructions implemented in Milk
coprocesr. The instruction set syntax is made of an instruction
mnemonic followed by destination and source registers.

The abbreviations used this chapter are listed in Table 4-1.

Abbreviation | Description

dr Destination register, nunber in the range 0..31

srl, sr2 Source register, number in the range 0..31 (in case
that the instruction orly needs one operand, it' §
simply named sr)

opc Opcode of Milk instructions

Table 4-1. Abbreviations used in coprocessor instruction set

Note that each of the supported instructions mnemonics ends with a
number (coprocessor index), for example, f addo, f add1, f mul 1, €tc.
This is due to the fact that COFFEE™ RISC core suppats up to 4
coprocessors, so any o them could be afloating-point unit (FPU), and
the one who shoud actually perform the operation is that indexed by
the number specified by the number at the end of the mnemonic. This
way, f addo is afloating-point addictionto be executed by coprocessor
number O, faddl is a floating-point addiction to be executed by
coprocessor number 1, and so on (for this reason, in the following
pages are explained the instructions related to coprocessor number O,
because the instructions related to the other ones are exactly the same
for meaning and syntax, and dffers only for the coprocessor index).

faddO
syntax: fadd0o dr, sri1, sr2
description: Single-precision floating-point (algebraic)
addiction to be executed by coprocessor number 0. The
contents of the source registers g1 and sr2 are alded
together and the result is placed to the destination register
dr. Overflow exception is raised if the result’ s exponent
exceeds 127. Underflow exceptionis raised if the result’ s
exporent exceeds -150. Together with owerflow and
underflow, also inexact exception coccurs. Invalid
operation exception accurs whenever both operands are
infinites with oppasite signs, or when at least one of the
operandsisa SNaN.

fsubO
syntax: f sub0 dr, srl, sr2

Modified: 18.02.2005 75/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

fmulO

fdiv0

fsgrtO

description: Single-precision floating-point (algebraic)
subtraction to be executed by coprocessor number 0. The
contents of the source register sr2 is subtracted by the one
in srl are subtracted and the result is placed to the
destination register dr. Overflow exception is raised if the
result’ s exponent exceeds 127.Underflow exception is
raised if the result' s exponent exceeds150. Together with
overflow and underflow, also inexact exception occurs.
Invalid operation exception occurs whenever both
operands are infinites with opposite signs, or when at
least one of the operandsis a SNaN.

syntax: fmul 0 dr, srl1, sr2

description: Single-precision floating-point
multiplication to be executed by coprocessor number O.
The contents of the source registers srl and sr2 are
multiplied and the result is placed to the destination
register dr. Overflow exception is raised if one of the
operands is infinite and the other is a finite number, or if
the result' s exponent exceeds 127. Underflow exceptionms
raised if theresult' sexponent exceeds150. Together with
overflow and underflow, also inexact exception occurs.
Invalid operation exception occurs whenever one operand
isinfinite and the other oneis null, or when at |east one of
the operands is a SNaN.

syntax: fdiv0 dr, srl, sr2

description: Single-precision floating-point division to be
executed by coprocessor number 0. The content of the
source register sr2 is divided by the one in srl and the
result is placed to the destination register dr. Overflow
exception is raised if dividend is infinite and divisor is
zero, or if the result’ s exponent exceeds 127. Underflow
exception is raised if the result’ s exponent exceeds150.
Together with overflow and underflow, aso inexact
exception occurs. Invalid operation exception occurs
whenever both operands are infinite or both are null, or
when at least one of the operands is a SNaN. Division by
zero exception is raised when a finite non-null number is
divided by anull divisor.

syntax: fsqrtO dr, sr

description: Single-precision floating-point square-root
to be executed by coprocessor number 0. The content of
the source register sr is square-rooted and the result is

Modified: 18.02.2005

76/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

fabs0

fmovO

fneg0

fnop0

fevt.sO

fevt.wO

placed to the destination register dr. Invalid operation
exception occurs whenever radicand is negative, or when
it saSNaN.

syntax: f absO dr, sr

description: Single-precision floating-point absolute
value (ABS) to be executed by coprocessor number O.
The absolute value of the content of the source register sr
is placed to the destination register dr. Invalid operation
exception occurs whenever operand isaNaN.

syntax: f mrov0 dr, sr
description: The operand has to be moved to another
register by coprocessor number 0. The value of the
content of the source register sr is moved to the
destination register dr.

syntax: fnegO dr, sr

description: Single-precision floating-point sign
inversion to be executed by coprocessor number 0. The
value of the content of the source register srisinverted in
sign and placed to the destination register dr. Invalid
operation exception occurs whenever operand is a NaN.

syntax: f nop0
description: No operation is executed.

syntax: fcvt.sO dr, sr

description: Integer to single-precision floating-point
conversion to be executed by coprocessor number 0. The
value of the content of the source register (considered as
an integer) sr is converted into single precision floating-
point format and placed to the destination register dr.

syntax: fevt.wO dr, sr

description: Single-precision executed by coprocessor of
the source floating-point and placed to the exception is
generated large argument (< -2147483649.0). Denormal
numbers are flattened to zero, and inexact result exception
israised.

fcCONDITIONO

Modified: 18.02.2005

771107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

syntax: f cCONDI TIONO dr, srl, sr2

description: Comparison to be executed by coprocessor
number 0. The contents of the source registers sr1 and sr2
are compared according to the condition specified in the
name of the instruction and the result is placed to the
destination register dr. Invalid operation exception occurs
when at least one of the operands is a NaN and MSB in
the opcode is set; result is unordered. NaN compares
unordered with everything including itself. Sign of zero is
ignored, so +0 = -0.

note: for more details about CONDI TI ON look in Milk
documentation.

Modified: 18.02.2005

78/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

S. ASSEMBLER DIRECTIVES

Assembler directives are instructions to the assembler to perform
various bookkeeping tasks, storage reservation, and aher control
functions. To dstingush them from other instructions, directive
names begin with a period.

Directives should by in lower-case (case sensitive).

align N
Pad the location counter (in the current section) to a
particular storage boundry. N defines the number of zero
bitsin LSB end d location courter:
N = 0 => byte boundxry (8-bits)(no padding)
N = 1 => halfword baundary (16-bits)
N = 2 =>word bourdary (32-bits)
This diredive has no effect if location courter is already
aligned properly.

.ascii “some text here”
Assemble text into consecutive aldresses, one character
per byte. You can opionaly use the backslash escape
characters. No trailing zero is added to terminate the
string. ASCII 8-bit conversionis used.

Jbyte[bl, b2, b3,...,bn]
Assemble bytes bl..bn to consecutive aldreses and
increment location counter after each byte. If no
arguments are given, location courter is incremented by

ore.
.bss
Start or continue bss section. In practice a bss section can
contain only alocation d zero initialized o uninitialized
data, likethis:
ny_vari abl e_i n_bss_secti on: .word 0
your _vari abl e_i n_bss_secti on: .word
.codel6|32|N

This directive is used to switch instruction encoding
mode. With selector ‘32" the assembler will switch to 3
bit mode outputting 32-bit machine instructions, with
selector ‘16 16-bit instructions are output. N
accommodates for future extensions to instruction set
architecture.

This directive shoud follow the section description
directive.

Modified: 18.02.2005 79/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Note: before using ore more time . codexX directive in
the section, make sure SWv XX instruction was in use
before.

.data
Start or continue data section.

.double[n1,n2,n3,n4,...,nN|
Assemble double predsion (64-bit presentation) floating
point numbers. Each number reserves eight bytes, so
location courter is incremented by eight after each
number. |IEEE Standard 754 is followed. If no arguments
are given, location counter is incremented by eight and
zeros al ocated. No rourding is dore.

.equ SYMBOL, EXPRESS ON
This directive sets the value of SYMBOL to
EXPRESSION. To define name diases is used syntax
SYMBOL = VALUE.
Constants are global for whale code.

.err [“Error message’]
When the assembler encounters this directive, it prints the
stringin qudes (if any given) and stops assembly process

.extern SYMBOL[, SYMBOL_2, .., SYMBOL_N]
Define a symbd to be external. Assembler treats all
undefined symbals as external but it produces warning
message if some symbol was used as external, but was not
declared with .external directive.

fill REPEAT, VALUE[, SIZE]
Fill REPEAT x SZE memory locations with VALUE.
Location courter will be incremented by an amount of
REPEAT x SZE. SZE issizein bytes; alowed values are
1,2, 4 or 8. If sizeisnaot specified, ore byteis assumed.

float [n1,n2,n3,n4,...,nn]
Assemble single precision (32-bit presentation) floating
point numbers. Each number reserves four byte, so
location courter is incremented by four after ead
number. |IEEE Standard 754is followed. If no arguments
are given, location courter is incremented by four and
zeros all ocated. No rourdingis dore.

.global SYMBOL[, SYMBOL_2, .., SYMBOL_N]
Define a symbal to be visible outside current source file.
Allows linking other modues with current modue.

Modified: 18.02.2005 80/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

.hword [n1n2,n3,M,...,.nMH
Assemble halfwords (16-bit integers) nl..nn and
increment location counter by two per argument. If no
arguments are given, location courter is incremented and
zeros assembled.

anclude “filename®
Include mde from specified file. Is possble define path
with filename or include with -1 argument in calling line.

Jocal label[, label2, ..., labelN]
Define local labels for macro. It supposed be just in 2™
macro line. In code it appears with the same name plus
number of macro use, e.g. in 1% time macro call it will be
label1, in 2 - label2.

Jdword [n1n2,n3,/,...,.nMH
Assemble long words (64-bit integers) nl..nn and
increment location courter by eight per argument. If no
arguments are given, location courter is incremented by
eight and zeros assembled.

.macro macro_name| (argl,arg2,..., agn)]
Start macro definition. Maaos can have local labels
defined with .local directive in 2" line (immediately after
macro name). Also is possble to define wnstants inside
macro o use dready defined constants. Use of any
another directive inside macro is not allowed.

.endm
Mark the end of a macro definition. If .endm will not be
found after 100lines, warning message is produced.

.org new_lc_valug], fill_byte]
Define anew value for current location counter. You can
only advance location courter. It is not possible to go
backwards. The skipped bytes are filled with fill_byte,
which by default is zero. Note that you cannot use a label
as new_|Ic value or you cannot use an expression as
new_Ic_value.

.proc [name]
Start of procedure. Ignored like comment.

.endproc [name]
End d procedure. Ignored like comment.

Modified: 18.02.2005 81/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

-rdata

Start or continue read-only data section.

.Space N

Reserve N bytes of space (increment the location counter
by N). Zeros are assembled?.

.section NAME[, TYPE, absolute_section_place]

Use the .section directive to assemble the following code
into a section named NAME. Section type (TYPE) can be
one of the following: b, X, d, r or nothing. Explanations of
section types are in Table 5-1.

If absolute section_place is set, section is defined to be

absolute.

Convention | Meaning

X Executable section (executable text) (loaded to
instruction memory area anyway, may contain PC
relative data).

r Read-only data section.

d Data section (initialized data) (read, write).

b Bss section (uninitialized data).

nothing Regular section (allocated, relocated, loaded). In

current version is the same like executable text
section.

Table 5-1. Section type conventions

text

Start or continue text section.

.word [n1,n2,n3,n4,...,nn]
.word “Hello world!”

Assemble words (32-bit integers) nl...nn and increment
location counter by four after each parameter/character. If
no arguments are given, location counter is incremented
by four and zeros assembled. The second version
allocates space for a string and places ASCII codes of the
string to consecutive words (3 zero bytes are added
before each character).

Modified: 18.02.2005

82/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

6. PROGRAMMING CONSIDERATIONS
This chapter gives rules and examples to follow when designing an
assembly language program.
The chapter addresses topic:
* The use of registers, section and location counters, and stack
frames (Section 6.1)
This chapter does not address coding issues related to performance or
optimization.
6.1 General Coding Concerns
This section describes some general areas of concern to the assembly
language programmer:
» Usage of registers (Section 6.1.1)
* Control of section and location counters with directives
(Section 6.1.2)
Another general coding consideration is the use of data structures to
communicate between high-level language procedures and assembly
procedures. In most cases, this communication is handled by means of
simple variables: pointers, integers, Booleans, and single- and double-
precision real numbers. Describing the details of the various high-
level data structures that can aso be used — arrays, records, sets, and
so on —is beyond the scope of this manual.
6.1.1 Register Use

The main processor has 2 sets of 32 32-bit integer registers. The uses
and restrictions of these registers are described in Table 1-1.

Register usage of a privileged user

When processor starts executing instructions after boot (see interface
document) following conditions are assumed: 32 bit instruction word
length, super user mode, register set SET2 for reading and writing and
all interrupts (also cop exceptions) disabled. Boot code has the
responsibility to initialize the special purpose registers to guarantee
proper handling of interrupts and coprocessor exceptions. User mode
can be entered by issuing the command r et u (see Chapter 3 for more
information about instructions). Before passing the control, registers
SPSR and PR31 must be set appropriately. Executing ret u causes

Modified: 18.02.2005 83/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide)

Version 0.7

PSR to be overwritten by SPSR (not al flags though) and PC
(program counter) overwritten by PR31. That is, execution will start at
address saved to PR31 and with status flags saved in SPSR.

When an application program issues the command scal | (requesting
some system/kernel service, for example), SPSR is overwritten with
PSR and PR3l is overwritten with link address (an address to return
when resuming application code). In practice this means that super
user is able to see the state in which the user was before calling system
code and is able to resume execution from the correct address. Also
the super user has full control over the user and the possibility to read
and alter the status bits of the user. An application program can pass
parameters to privileged software (and the other way around) in some
general purpose registers RXX , if desired , since privileged software
can read and write both sets of registers with the help of chrs
command. For more information about instructions scal | , ret u and
chr s see Chapter 3.

Register limitations in 16-bit mode

In 16-bit mode only the last eight registers from both sets are
available, that is registers R24...R31 from set 1 and PR24...PR31 from
set 2. Assembler provided straightforward notions to access registers
arelisted in Table 6-1.

Condition registers C1...C7 are disabled in 16 bit mode. Register COis
always used (automatically selected) with conditional branches and
arithmetic.

Register Softwar e used name Description
name
32-bit mode
RO..R31 RO..R31 | r0..r31 Set 1 registers
PRO..PR31 | RO..R31|r0..r31 Set 2 registers
C0..C7 C0..C7 | c0..c7 Condition registers
CRO0..CR31 | CR0O..CR31|cr0..cr31 | Coprocessor registers
16-bit mode
R24..R31 RO..R7 | r0..r7 Set 1 registers
PR24..PR31 | RO..R7 | r0..r7 Set 2 registers
C0 C0|cO Condition registers
CRO0..CR31 | CRO..CR31 | cr0..cr31 | Coprocessor registers

Table 6-1. Register name and softwar e used name mapping

Modified: 18.02.2005

84/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

6.1.2 Using Directives to Control Sections and Location Counters

See Section 2.10 and Section 2.11 for details about sections and
location counters. Also see Chapter 5 for more information about
directives. org and. al i gn.

Modified: 18.02.2005 85/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

7. OBJECT FILES

7.1 Object File Overview

Compilers and assemblers create object files containing the generated
binary code and data for a source file. Linkers combine multiple
object files into one file; loaders take object files and load them into
memory.

Note, in this document we speak about object filesin COFF format.

What goes into an object file?

An object file contains basic information:

1

Header information: This is overal information about the file,
such as the size of code, the name of source file it was
trandlated from, and the creation date.

Object code: This is binary instructions and data generated by
acompiler or assembler.

Relocation information: Thisisalist of the places in the object
code that have to be fixed up when the linker changes the
address of the object code.

Symbols: These include global symbols defined in this module
and symbols to be imported from other modules or defined by
the linker.

Debugging information: This includes other information about
the object code that is not needed for linking but is useful to a
debugger (such as source file and line number information,
local symbols, and descriptions of data structures used by the
object code such as C structure definitions)

Figure 7-1 shows the overall structure of the object file.

Modified: 18.02.2005

86/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

File Header
Optional Information
Section | Header

Section n Header

Raw Data for Section |

Raw Data for Section n
Felocation Information for Section |
Felocation Information for Section n

Line Numbers [or Section |

Line Numbers lor Section n
Svimbol Tahle
String Table

Figure 7-1. The structure of the object file

The last four sections (relocation, line numbers, symbol table, and the
string table) may be missing. Also, if there are no unresolved external
references after linking, the relocation information is no longer needed
and it is absent. The string table is also absent if the source file does not
contain any symbols with names longer than eight characters.

Designing an object format

The design of an object format is a compromise driven by the various
uses to which an object file will put. A file may be linkable, used as
input by link editor or linking loader; executable, capable of being
loaded into memory and run program; loadable, capable of being
loaded into memory as a library along with a program; or any
combination of the three.

A linkable file contains extensive symbol and relocation information
needed by the linker along with the object code. The object code is
often divided up into many small logical segments that will be treated
differently by the linker. An executable file contains object code —
usually page aligned to permit the file to be mapped into the address
space — but doesn't need any symbols (unless it will do run-time
dynamic linking) and needs little or no relocation information. The
object code is a single large segment or a small set of segments that
reflect the hardware execution environment (most often read-only vs.
read/write pages). Depending on the details of a system’s run-time
environment, a loadable file may consist solely of object code, or it
may contain complete symbol and relocation information to permit
run-time symbol linking.

There is some conflict among these applications. The logically
oriented grouping of linkable segments rarely matches the hardware-

Modified: 18.02.2005 87/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

7.2

oriented grouping of executable segments. Particularly on smaller
computers, linkable files are read and written by linker a piece a a
time, while executable files are loaded as a whole into main memory
(DOS linkable OMF and executable EXE).

The basic elements of the COFF definition

A simple abstraction is essential to the COFF concept, an abstraction
that identifies the most seminal, common denominators of all
operating systems.

The COFF system maps the three abstract elements of a program:
machine code, initialized data, and uninitialized data, to three
corresponding specia sectionsin the COFF file:

* Thetext section

e Thedata section

* Thebss section

The COFF file aso includes areas for relocation information and
symbolic debug information. All this information is organized as a
data structure.

The COFF defined data structure includes an organized system of
pointers that alow efficient access to, and manipulation of, any of the
three sections, as well as the symbolic debug information and
relocation information areas that contain useful information to the
linker.

The COFF definition creates two major benefits: enhanced portability
and system extensibility.

Object File Content

A section is the smallest portion of the object file that is relocated and
treated as one separate and distinct entity. Text sections contain
executable machine code and the operating system treats them as write
protected. Data sections contain initialized program code and are
readable and writable. Bss sections basically contain information on
how large the uninitialized data area is. The bss section is usualy
made a contiguous with the data section when the program is loaded
into memory.

Software defined data structures are also easily extensible. Though the
text, data and bss sections are specia, they are not sacrosanct. If
necessary, it is possible to add sections to the COFF definition.

Modified: 18.02.2005 88/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Also the assmbler’s .section directive was created in response to the
need of a special section. The .section allows the specification d a
section rame, and the section content’s type. User defined sections
follows main sedions.

COFF file headers

The roughly fifty or so bytes at the beginning d the COFF file contain
the COFF file headers. The COFF file headers had, among aher
things, the information indicating whether or not a file is executable
and general run-time parameters. The header is also the beginning
point for the system of pointers that relate the different structures of
the COFFfile.

There ae two COFF headers; both are defined as structures that
contain pertinent COFF information fields. The first is called the file
header, and the second (which may or may nat be present) is called
the optional header.

7.2.1 The File Header
The first of the two COFF headers are usually simply referred to as
the file header and contains general information such as a file time
stamp and a magic number.
The file header has 20 bytes of information as shown in Table 7-1.
Bytes Name Description
0-1 f_magic Magic number for target madcine (OxCOOF for COFFEE
™ RISC core)
2-3 f_nscns Number of sections contained within this file (main and
subsections)
4-7 f_timdat Time and date stamp indication when the file was created,
expressed seconds since 00:00:00 GTM, January 1, 1970
8-11 f symptr | File pointer containing the starting address of the symbol
table
12-15 | f _nsyms | Number of entriesin the symbad table
1617 | f_opthar Number of bytesin the optional header
1819 |f flag Flags

Table 7-1. File header infor mation

In general, f_nscns field says how many section headers are
followingfile header (and ogional header).

File pointer is the byte offset to the start of the symbol table from
beginning d the file. The flags describe the type of the object file.
Currently defined flags are presented in Table 7-2.

Modified: 18.02.2005 89/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Flag Name Description

0x0001 | F RELFLG | If set, there is no relocation information in this file. This
isusually clear for objects and set for executables

0x0004 | F_LNNO If set, al line number information has been removed
from thefile (or was never added in the first place)

0x0008 | F LSYMS | If set, dl local symbads have been removed from the file
(or were never added in the first place)

Table 7-2. Currently defined flags

7.2.2

7.2.3

The Optional Header

The second COFF header is known by at least four names: optional
header, standard header, system a. out header, and auxiliary header.
In this document we choaose to call the second header the optional
header.

Most of the fields in the optional header provide run-time information
about the COFF file. And since only executable files need run-time
information, it is the linker that fills in the gpropriate values.
Typically, assembler-created object files do nd contain the optional
header, bu if the optional header is present, most of its values are
meaningless(and nd necessry initialized to zero).

Crasm (COFFEE ™ RISC Assembler) provides COFF object file
withou optional header (f _opt hdr isalways zero).

Section Headers

Section headers follow the optional header. The position d the first
section header is found ly adding the size of the file header to the
value fourd inthef _opt hdr that represent the size of optional healer.

The section header contains two fields that play a key role in the
process of relocation: s_rel pt r, the pointer to the relocation entries;
ands_scnpt r, the pointer to the section raw data.

Subsections headers can follow section header. Amount of subsection
headersis st in s flag field. All subsections are part of main section,
just divided by coding mode. Modeis st ins flag field.

Each section header has 40 bytes of information as shown in Table
7-3.

Bytes

Name Description

0-7

S _name 8-character null padded section rame

Modified: 18.02.2005 90/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

8-11 S _paddr Physical address of section. For unlinked objects, this
address is relative to the object’s address space (i.e. first
section is always at offset zero)

12-15 | s vaddr Virtual address of section. Always the same value as
S _paddr

16-19 S size Section size in bytes. You should always read this many
bytes from the file, beginning s scnptr bytes from
beginning of the object. Zero if section is empty

20-23 | s _scnptr File pointer to raw datafor this section

24-27 S relptr File pointer to relocation entries for this section

28-31 s Innoptr | File pointer to line number entries for this section

32-33 s nreloc Number of relocation entries for this section. Beware files
with more than 65535 entries; this field truncates the
value with no other way to get the “rea” value

34-35 s nlnno Number of line number entries for this section. Beware
files with more than 65535 entries; this field truncates the
value with no other way to get the “red” value

36-39 s flags Flags

Table 7-3. Section header information

The size of amain section is padded to amultiple of 4 bytes.

Long names of sections are kept in string table; in that case s_nane
field starts with dlash (*/), and has offset to string table where the
name islocated.

Flags describe section contents and determine how the linker and
system loader handle the section.

Detailed explanation of s flag bytesisin Table 7-4.

Byte Description

1 Section mode description

2-3 Amount of subsectionsin main section
4 Section contents description

Table 7-4. Detailed s_flag explanation

Possible values of section mode are in Table 7-5. Possible values of
section contents arein Table 7-6.

Flag Description

0x00 Main section (mode
unimportant)

0x10 32-bit mode subsection

0x01 16-bit mode subsection

Table 7-5. Section mode flags

Modified: 18.02.2005

91/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Flag Name Description

0x10 STYP_RDATA | Section contains only read-only data

0x20 STYP TEXT Section contains executable text; text sections are
allocated, relocated, and |oaded

0x40 STYP_DATA | Section contains initialized data; data sections are
allocated, relocated, and |oaded

0x80 STYP_BSS Section contains only uninitialized data; bss ctions
are only allocated

Table 7-6. Section contents flags

7.2.4

7.2.5

Section Data

The raw data for each section begins at a 4-byte boundary in the file.
Section data ae in the same sequence as sections headers. Each
section data can be found byusing s_scnpt pointer value from that
section header.

Predefined sedion header and section raw data sequence is presented
in Figure 7-2 (it issimilar to OMAGIC definition).

text
.rdata
user defined text or rdata
section 1

user defined text or rdata
section n
.data
user defined data section 1

Text segment

segment

Data

user defined data section n
.bss
user defined bss section 1

S
segment

S

B

user defined data section 1
Figure 7-2. Predefined section raw data sequence

Section Relocation Information

A relocation entry is created by the assembler for every instance of an
address reference that requires patching by the linker. The relocation
entry’s field values identify the aea in raw data that needs patching
and associates that area with a symbad table entry that defines the run-
time aldress — the value used to patch the raw data. Note, some
instructions can have 2 relocation entries.

Modified: 18.02.2005 92/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide)

Version 0.7

Each relocation entry has 10 bytes of information as shown in Table

7-7.

Bytes Name Description

0-3 r_vaddr (Virtual) address of relocation. This is a byte-offset value
relative to the start of its raw data

4-7 r_symndx | Pointer to appropriate symbol table entry that contains
run-time address information (counted from 0). The
symbol table entry is accessed by adding this value,
r_symndx, to the value of f _symptr.

8-9 r type Type of relocation

Table 7-7. Relocation entry information

The r _type field tells the linker which algorithm to use during the
address calculation process. Currently defined types are in presented

in Table 7-8.

Type Bit form | Description

0x67C8 | 011 00111 | Start in 3rd bit, 7 least significant bits after shifting to
11001 000 | right by 25; simple relocation independent on mode

0x6790 | 011 00111 | Start in 3rd bit, 7 least significant bits after shifting to
10010 000 | right by 18; simple relocation independent on mode

0x6758 | 01100111 | Start in 3rd bit, 7 least significant bits after shifting to
01011 000 | right by 11; simple rel ocation independent on mode

0x6720 | 01100111 | Start in 3rd bit, 7 least significant bits after shifting to
00100 000 | right by 4; simple relocation independent on mode

0x6400 | 01100100 | Start in 3rd bit, 4 least significant bits, no shifting; simple
00000 000 | relocation independent on mode

Ox4F00 | 01001111 | Start in 2nd bit, 15 least significant bits, no shifting;
00000 000 | simple relocation independent on mode

0x2178 | 001 00001 | Start in 1st bit, 1 least significant bit after shifting to right
01111 000 | by 15; simple relocation independent on mode

Ox4F80 | 010 01111 | Start in 2nd bit, 15 least significant bits after shifting to
10000 000 | right by 16; simple relocation independent on mode

Ox21F8 | 001 00001 | Start in 1st bit, 1 least significant bit after shifting to right
11111 000 | by 31; simple relocation independent on mode

0x0000 | 000 00000 | Start in O hit, 32 least significant bits (zero length is a
00000 000 | nonsense, so it should be assume as 32-bit long), no

shifting; simple relocation of external or internal defined
word independent on mode

0x1606 | 000 10110 | Start in O bit, 22 least significant bits, no shifting; 32-bit
00000 110 | mode external PC relative relocation

0x1906 | 000 11001 | Start in O bit, 25 least significant bits, no shifting; 32-bit
00000 110 | mode external PC relative relocation

Ox0AO05 | 000 01010 | Start in O bit, 10 least significant bits, no shifting; 16-bit

Modified: 18.02.2005

93/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

| 00000 101 | mode external PC relative relocation

Table 7-8. Currently defined relocation types

Detailed explanation of bit form of relocation typeisin Table 7-9.

Bit Description

1513 | Bit position where relocation starts; in byte specified by
r vaddr

12-8 Length o immediate (addresy vaue in bits, least
significant bits

7-3 Length o shift to left in hits

2-0 Relocation mode

Table 7-9. Explanation of a bit form in relocation type

7.2.6

7.2.7

Line Numbers Information

Line number information is a special part of the COFF file that
contains line number structures. The line number structure asociates
every line in the source file that represents machine code with its
relevant address in the text section. Line number structures allow
creation o breakpoints by symbolic definition, and suppat source
code trace of program execution.

Crasm (COFFEE ™ RISC Assembler) provides COFF object file
withou line numbers (s_I nnoptr, s_nl nno and x_nl i nno fields are
always zero).

Symbol Table Information

Thoughthe symbol table entry is nat an excessve large structure, the
information it contains is the most complex of the COFF definition.
This is because of the complex nature of debug information. All
symbols have a symbol table entry, bu not all have relocation
information.

COFF defines a dual role for the symbadl table: defining the run-time
address for the relocation process and poviding symbadic debug
information. For the moment, debug information aspect isignored and
instead the explanation concentrates only on those parts of the symbol
table entry that play arolein the relocation process.

Symboadls appea in the sequence show in Figure 7-3(order is very
important only for debug information).

| Static symbdsandlabels |

Modified: 18.02.2005 94/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Defined global symbols
Undefined global symbols

Figure 7-3. Symbols appearing sequence

The symbol table consists of at least one fixed-length entry per
symbol with some symbols followed by auxiliary entries of the same
size. The entry for each symbol is a structure that holds the value, the
type, and other information.

All symbols, regardless of storage class and type, have the same
format for their entries in the symbol table. The symbol table entries
each contain 18 bytes of information. The meaning of each of the
fields in the symbol table entry is described in Table 7-10. Note that
indices for symbol table entries begin at 0 and count upward. Each
auxiliary entry also counts as one symbol.

Bytes Name Description

0-7 n_name 8-character null padded section name or an index to a
symboal in the string table

8-11 n_vaue Relocatable address of the symbol. This value is placed
into the area in the section’s raw data pointed to by the
relocation structure’sr_vaddr value

12-13 n_scnum | Section number where the symbol is defined. The first
Section is section one

14-15 n_type Basic and derived type specification. Currently not in use
and alwaysis0

16 n_sclass Storage class of symbol. Tells where and what the symbol
represents

17 n_numaux | Number of following auxiliary entries

Table 7-10. Symbol tableinformation

7.2.7.1

Symbol name

The first 8 bytes in the symbol table entry can have two meanings. If
the symbol name is eight characters or less, the (null-padded) symbol
name is stored there. If the symbol name is longer than eight
characters, then the entire symbol name is stored in the string table. In
this case, the first byte is zero, and the second one is the offset
(relative to the beginning of the string table) of the name in the string
table as shown in Table 7-11.

Bytes

Name Description

0-3

n_zeroes | Zerointhisfield indicates the nameisin the string table

47

n_offset Offset of the name in the string table

Table 7-11. Description of a symbol name

Modified: 18.02.2005 95/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

7.2.7.2 Symbol value
The meaning d a symbad value depends on its storage dass Crasm
(COFFEE ™ RISC Assmbler) used storages classes are listed in
chapter Storage Class. In all cases value has a meaning relocatable
address.
Relocatable symbols have avalue equal to the virtual address of the
symbad (relative to the beginning of section raw data). When the
linker relocates the section, the value of theses symbad's changes.
7.2.7.3 Section number
The meaning o n_scnumfield is Immarized in Table 7-12.
Value | Name Description
-1 N_ABS Absolute symbal
0 N_UNDEF | Undefined (external) symbad
> 1 N_SCNUM | Section number

Table 7-12. The meaning of n_scnum field

The subsections are cmunted as sctions too, kecause they section
headers are listed. Sedion numbers are directly connected with section
headers: n_scnum = 1 linksto 1¥ section header.

Subsections aren't listed in Symba Table.

7.2.7.4 Storage class

The storage classfield n_scl ass has one of the values described in
Table 7-13.

Value | Name Description

0x00 C NULL —

0x02 C EXT External (puldic) symbad

0x03 C _STAT Static (private) symbol

0x06 C LABEL | Labe

Table 7-13. Storage classfield n_sclass values

7.2.7.5

Auxiliary entries

An auxiliary table entry of a symbad contains the same number of
bytes as the symbd table entry (18 bytes). However, urlike symbol
table entries, the format of an auxiliary table entry depends on symbol
type and storage class

Modified: 18.02.2005 96/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide)

Version 0.7

Crasm (COFFEE ™ RISC Assmbler) uses auxiliary entries just for
sections. The format is shown in Table 7-14.

Bytes Name Description

0-3 x_scnlen | Sectionlength

4-5 x_nreloc | Number of relocation entries
6-7 x_nlinno | Number of line numbers
8-17 - Unused (padded with zeros)

Table 7-14. Theformat of a auxiliary tableentry

7.2.8 String Table Information
The string table is the final comporent of the symbolic system. If a
symbao exceeds eight characters, the name field in the symbol table
structure does not contain the name, bu instead it is an dffset in the
string table. The string table @nsists of null-terminated strings,
therefore it can suppat symbol names of any length.
The first four bytes of the string table is the size of the string table in
bytes; off sets into the string table, therefore, are greater than o equal
to 4.
An empty string table dways has the first four bytes used for defining
the length, bu the length value in this caseis 0.
7.3 Assembler and Linker Process of Relocation
This sdion presents a step-by-step wakthrough d a simple
relocation process.
The simple relocation case occurs only when ore source file is
compiled and linked. Thisis nat very realistic, since most applications
consist of several source files that have external symbadlic references.
Thoughlacking redism, the ssimple relocation case is the best way to
explain therelocation rocess
Relocatable code before linking
The following example shows address encoding d a machine code
symbalic accessto data defined in the data section:
Addr ess Addr ess Opcode Sour ce
in code in section
"""""""""""""""""""""""""""""""" TEXT
00000000 00000000 0100101000000100 xor r4, ra
00000002 00000002 1010100001101100 ori r4, @abel
00000004 00000004 0011010001110100 slli r4, 7
00000006 00000006 1010101001101100 ori r4, @abel
00000008 00000008 0011010001110100 slli r4, 7
Modified: 18.02.2005 97/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

0000000A 0000000A 1010101011001100 ori r4, @abel
0000000C 0000000C 0011010001110100 slli ra, 7
0000000E 0000000E 1010101100001100 ori r4, @abel
00000010 00000010 0011010001000100 slli r4, 4
00000012 00000012 1010100001110100 ori r4, @abel
. DATA
00000014 00000000 o <dat a>
1B36CE32 1B36CELE 01100001 | abel: a
1B36CE34 1B36CE20 o <dat a>
Note, this code is produced by the assembler. In origina source code
text section looks like this:
. text
. codel6
Idra r4, |abel
The object file created by the assembler results in the ori r4,
@ abel instructions finding label at address Ox1B36CE1E. Whole
address is too long to fit into ORI instruction, so it is translated into
32-bit binary (0b00011011001101101100111000011110), divided
into separate parts and written into separate ORI instructions (the
emboldened portion of the opcode).
00011011001101101100111000011110 - original address (0x1B36CELE)
0001101 - 1" ORI
1001101 - 2™ ORI
1011001 - 39 ORI
1100001 - 41" ORI
1110 - 5t ORI

There is no need to regenerate original address value from ORI (LUl or
LLI) instructions (using relocation type r _t ype field from relocation
entries table), because each instruction relocation entry has index to
symbol table entry (n_symdx) where this value is located in n_val ue
field.

Linking this object file causes the relocation process to be performed.
For the moment, assume that linked executable files have the text
section starting at 0x0, and the data section starting at 0x100. This
means that the linker updates (or relocates) the ori r4, @ abel
instructions symbolic reference to | abel with the correct run-time
address.

Each ORI instruction has different relocation entry, but they point to
the same symbol table entry.

The 1% ORI instruction relocation information is following:
00000003 00000004 67C8

That means:

Modified: 18.02.2005 98/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

r_vaddr = 0x3

r_symdx = 0x4

r_type = Ox67C8 (Start in 3 bit, 7 least significant bits after
shifting to right by 25; simple relocation)

Linker should understand current line as follows — the address value
from symbol table entry 4 should be shifted to right by 25 bits and 7
least significant bits are written into byte Ox3 (relative to text section —
because this relocation entry depends to text section) begin with 3" bit
position.

The 2™ orI instruction relocation information is following:
00000007 00000004 6790

That means:

r_vaddr = 0x7

r_symdx = 0x4

r_type = 0x6790 (Start in 3 bit, 7 least significant bits after
shifting to right by 18; simple relocation)

Linker should understand current line as follows — the address value
from symbol table entry 4 should be shifted to right by 18 bits and 7
least significant bits are written into byte Ox7 (relative to text section —
because this relocation entry depends to text section) begin with 3" bit
position.

The3“ oRl instruction relocation information is following:
0000000B 00000004 6758

That means:

r_vaddr = OxB

r_symdx = 0x4

r_type = Ox6758 (Start in 3 bit, 7 least significant bits after
shifting to right by 11; simple relocation)

Linker should understand current line as follows — the address value
from symbol table entry 4 should be shifted to right by 11 bits and 7
least significant bits are written into byte OxB (relative to text section
— because this relocation entry depends to text section) begin with 3"
bit position.

The4™ orl instruction relocation information is following:
0000000F 00000004 6720

That means:

r_vaddr = OxF

r_symdx = 0x4

r_type = 0x6720 (Start in 3" bit, 7 least significant bits after
shifting to right by 4; simple relocation)

Linker should understand current line as follows — the address value
from symbol table entry 4 should be shifted to right by 4 bits and 7
least significant bits are written into byte OxF (relative to text section —

Modified: 18.02.2005 99/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

because this relocation entry depends to text section) begin with 3" bit
position.

The 5™ R instruction relocation information isfollowing:
00000013 00000004 6700

That means:

r_vaddr = 0x13

r_symdx = 0x4

r_type = 0x6700 (Start in 3 bit, 4 least significant bits, no
shifting; simple relocation)

Linker should understand current line using following instructions —
the from address value from symbol table entry 4 (without shifting) 4
least significant bits are written into byte Ox13 (relative to text section
— because this relocation entry depends to text section) begin with 3™
bit position.

The symbol information (from symbol table entry 4) isfollowing:
6c6162656c000000 1B36CELE 0002 0000 06 00

That means:
n_nanme = | abel
n_val ue = 0x1B36CELE

(or 0b00011011001101101100111000011110)

n_scnum = 0x2 (points to .data section)
n_type = 0x0

n_scl ass = 0x6 (C_LABEL)

n_numaux = 0x0 (no auxiliary entries)

Linker algorithm

One way how linker can calculate relocated address:

1. Linker setsthe run-time start addresses for sections.

2. Linker gets current relocation address from symbol table entry
(whichisindexed by r _symdx) n_val ue field.

3. Linker calculates new relocation address by adding run-time
start address of section (which number is in symbol entry
n_scnum field) and current relocation address (because it is
relative offset of the symbol within the section).

4. Now linker needs to do manipulations with new calculated
address. This is needed because address is assumed to be 32-
bits long but places for immediate values in instructions are
less. Manipulations are described inr _t ype:

* Linker needs shift to left new value by so many bits as
itissetin7..3 bitsfromr _type;

» Linker takes so many least significant bitsasitissetin
12..8 bitsfromr _t ype;

5. Linker gets byte address in raw data with pointer r _vaddr and
exact bit position is set in 15..13 bits from r _type. That is

Modified: 18.02.2005 100/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

starting point for writing bits that it took in step 4. Note, bits
are needed to be written form right to left starting from least
significant.

Example of 2" orI instruction:

00000006

00000006

00000006

1. The new address of data section is0x100

2. Symbol table entry 4 -6c6162656c000000 1B36CELE

0002 0000 06 00
IMM address is 0x1B36CELE (n_val ue fielf).

New address value = 0x 1B36CELE + 0x100 = 0x1B36CF1E

1B36CF1E in 32-bit binary is
0b00011011001101101100111100011110

Relocation entry for this instruction - 00000007
00000004 6712

r_type = 0x6790 can be written:
011 00111 & 10010 000
3 1 7 | 18 | 0

Linker should understand whole line as follows — the
address of IMM from symbol table entry 4 (note: entry
counting starts form 0, auxiliary entries are counted too)
should be shifted to right by 18 bits and 7 least significant
bits are written into byte Ox7 (relative to text section
because this rel ocation depends to text section) begin with
3 bit position.

* Weneed shift value
0b00011011001101101100111100011110 to right
by 18. We get 0b00011011001101

* For asimportant are just 7 least significant bits, so

we get 0b1001101
5. New value from step 4 is written into Ox7 byte begin with
3 bit position.
10101010 01101100 ori r4, @ abel
6th byte 7th byte
1010101001101 100 ori r4, @ abel
I
3rd bit
101010 1001101 100 ori r4, @ abel

<-
7 bits long | MM val ue

Modified: 18.02.2005

101/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Relocatable code after linking

The relocated code looks like this:

Addr ess Opcode Sour ce
. TEXT
00000000 0100101000000100 xor r4, ra
00000002 1010100001101100 ori r4, @abel
00000004 0011010001110100 slli ra, 7
00000006 1010101001101100 ori r4, @abel
00000008 0011010001110100 slli ra, 7
0000000A 1010101011001100 ori r4, @abel
0000000C 0011010001110100 slli ra, 7
0000000E 1010101110001100 ori r4, @abel
00000010 0011010001000100 slli ra, 4
00000012 1010100001110100 ori r4, @abel
. DATA
00000100 <dat a>
1B36CFLE 01100001 label: a
1B36CF20 o <dat a>
After linking expressions like address in code (relative to start of
whole sour ce codef/file) and address in section (relative to start of
section) isn't used. Now the address depends on new value where
section is relocated.
The new address of the label is Ox1B36CF1E (old value plus new
address of data section start), in 32-bit binary it is
0b00011011001101101100111000011110. This value is shifted and
parted according to defined relocation types r _t ype (the emboldened
portion of the opcode).
00011011001101101100111100011110 - original address (0x1B36CFlE)
0001101 - 1st ORI
1001101 - 2nd ORI
1011001 - 3rd ORI
1110001 - 4th ORl
1110 - 5th ORI
7.4 Object-File Formats (OMAGIC, NMAGIC, ZMAGIC)

The optional header stores run-time information about the object. Its
magic number field indicates how the file is to be organized in virtual
memory.

The possible image formats are:
* ImpureFormat (OMAGIC) (Section 7.4.1)

Modified: 18.02.2005 102/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

7.4.1

OMAGIC files are typically relocatable object files. They are
referred to as “impure” because the text segment isw ritable.
Shared Text Format (NMAGIC) (Section 7.4.2)

NMAGIC files are static executables that use a different
organization from the default ZMAGIC layout. The NMAGIC
format is historical and offers no special advantages. In an
NMAGIC file, the text segment is shared.

Demand Paged Format (ZMAGIC) (Section 7.4.3)
ZMAGIC files are executable files or shared libraries. This
format is referred to as demand-paged because its segments are
blocked on page boundaries, allowing the operating system to
page in text and data as needed by running process.

The ordering of section within segment is flexible. All following
figures depict the default ordering as laid out by the linker.

The default segment ordering, which places the text segment before
the data segment, is flexible. However, the bss segment is required to
contiguously follow the data segment, wherever the data segment is
located.

All three formats are constrained by the following restrictions:

Segments must not overlap
The bss segment must follow the data segment

Impure Format (OMAGIC) Files

The typicaly OMAGIC format is shown in Figure 7-4.

pdata

text
JAnit

find
TCohst
Tdata
tsinit
Jita

it

Jitd
user text

tazt
segimant

could be several / data data
wdata segment

uger sections
\ Sdata
uszer data |

Sbag
baa

bas
Eeg ment

Figure 7-4. OMAGIC layout

Modified: 18.02.2005

103/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide)

Version 0.7

7.4.2

Features:

* Segments must not overlap

e The bss segment must follow the data segment

e Starting section addresses are aligned on a 16-byte boundary

* Prelink OMAGIC objects are zero-based, with the data
segment contiguous to the text segment

* May contain relocation information

» Cannot be a shared object

OMAGIC layout is most commonly used for pre-link object files
produced by compilers. Post-link OMAGIC files tend to be used for
special purposes such as loadable device drivers or on input objects.

OMAGIC files can also be executable. A programmer might also
choose to use an OMAGIC format for self-modifying programs or for
any other application that has a reason to write to the text segment.

Shared Text (NMAGIC) Files

The NMAGIC file format is of historical interest only. The typicaly

NMAGIC format is shown in Figure 7-5.

Joorst

rdata

Jdita

- lif8
litd

Alsirut

pdata

Jext

Anit

ini

user text

data

could be several/x
user sections S

sdata

%

Sdata

¢

user data

sbas

Figure 7-5. NMAGI C layout

Features:

bas

* Segments must not overlap
* The bss segment must follow the data segment

text
segment

data
segment

bas
segment

Modified: 18.02.2005

104/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

» Text and data segment addresses fall on page-size boundaries.
The bss segment is aligned on a 16-byte boundary

» Cannot contain relocation information

» Cannot be a shared object

7.4.3 Demand Paged (ZMAGIC) Files

The ZMAGI C format can have 2 different layouts:
» Layout for shared objects shown in Figure 7-6.

headears
dymamic
Jdibliat
Teldyn
Jaonflict

ST
dymstr
dynsym
hash text

_ Toorgt segment
coldbein roata .

datz segmert. 1te
Aitd

couldbe in T
data segrment k{1
pdaa
Text
Anit
.t placernent of
could be several e u;:lratext — rdata and
user sections : Alsinit if 1n

#| user datz data data segment

gdata
seormeant
Gdata &

got
ghsg —
bas

bss segment

Figure 7-6. ZMAGIC dynamic layout

» Layout for static executable objects shown in Figure 7-7.

Modified: 18.02.2005 105/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

headers
Toonst
rdata
Jdita
Jditz
it
Alsinit text
pdata segment
et
Jnit

dind
user text
Adata
xdata data
adata segment
N user data
.shss =
bas

could be several -
user sections X

bas segment

Figure7-7. ZMAGIC static layout

Features:

* Segments must not overlap

e The bss segment must follow the data segment

» Text and data segments are blocked; the blocking factor is the
page size

» Can be either a shared or nonshared object

» Cannot contain relocation information, but shared objects may
contain dynamic relocation information

The .rdata and .t1sinit sections are shown as a part of the text
segment. However, it is possible that one or both of those sections
might be in the data segment. They are placed in the data segment
only if they contain dynamic relocations.

Modified: 18.02.2005 106/107

COFFEE™ RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

8. REFERENCES

1. Linkersand Loaders, John R.Levine.
2. Understanding and Using COFF, Gintaras R.Gircys.
3. Developer's Topics, Chapter 7 — Common Object File Format.

Modified: 18.02.2005 107/107

