
.

$VVHPEOHU�0DQXDO �

�$VVHPEO\�/DQJXDJH�3URJUDPPHU·V�*XLGH� �
&2))((70�5,6&�&25(�

9HUVLRQ���� �
�

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 2/107

VERSION HISTORY

Version Date Changes
0.1 25.08.2004 First draft
0.2 11.09.2004 Additions and corrections (Juha)
0.3 13.10.2004 Corrections to fit crasm pre 2
0.4 01.11.2004 Corrections
0.5 21.12.2004 Corrections to fit crasm pre2.11
0.6 31.01.2005 Corrections to fit crasm 1.0
0.7 18.02.2005 Corrections

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 3/107

TABLE OF CONTENTS

OVERVIEW... 7

1. ARCHITECTURE-BASED CONSIDERATIONS... 9

1.1 REGISTERS... 9
1.1.1 Main Processor Registers.. 9
1.1.2 Coprocessor Registers ... 23

1.2 BIT AND BYTE ORDERING ... 24
1.3 ADDRESSING ... 25
1.4 EXCEPTIONS .. 25
1.5 INTERRUPTS... 28

2. LEXICAL CONVENTIONS... 32

2.1 BLANK AND TAB CHARACTERS... 32
2.2 COMMENTS.. 32
2.3 IDENTIFIERS... 32
2.4 CONSTANTS ... 33

2.4.1 Scalar Constants .. 33
2.4.2 Floating-Point Constants... 33
2.4.3 String Constants... 34

2.5 MULTIPLE LINES PER PHYSICAL LINE ... 34
2.6 STATEMENTS ... 34

2.6.1 Labels... 34
2.6.2 Null Statement.. 35
2.6.3 Keyword Statement .. 35

2.7 EXPRESSIONS... 35
2.8 MACROS .. 35
2.9 CONDITIONAL EXECUTION .. 35
2.10 SECTIONS... 36
2.11 LOCATION COUNTER ... 37
2.12 RELOCATIONS.. 38

3. MAIN INSTRUCTION SET... 39

3.1 SUMMARY OF MACHINE INSTRUCTIONS.. 40
3.2 INTEGER ARITHMETIC INSTRUCTIONS ... 48
3.3 BYTE AND BIT FIELD MANIPULATION INSTRUCTIONS .. 51
3.4 BOOLEAN BITWISE OPERATION INSTRUCTIONS .. 54
3.5 BRANCH (CONDITIONAL JUMP) INSTRUCTIONS... 55
3.6 JUMP INSTRUCTIONS.. 58
3.7 INTEGER COMPARISON INSTRUCTIONS.. 59
3.8 SHIFT INSTRUCTIONS... 59
3.9 MEMORY LOAD AND STORE, DATA MOVING INSTRUCTIONS ... 61
3.10 COPROCESSOR INSTRUCTIONS ... 62
3.11 MISCELLANEOUS INSTRUCTIONS... 62
3.12 PSEUDO INSTRUCTIONS ... 64

4. COPROCESSOR INSTRUCTION SET.. 75

5. ASSEMBLER DIRECTIVES ... 79

6. PROGRAMMING CONSIDERATIONS.. 83

6.1 GENERAL CODING CONCERNS .. 83
6.1.1 Register Use ... 83
6.1.2 Using Directives to Control Sections and Location Counters 85

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 4/107

7. OBJECT FILES ... 86

7.1 OBJECT FILE OVERVIEW ... 86
7.2 OBJECT FILE CONTENT.. 88

7.2.1 The File Header ... 89
7.2.2 The Optional Header ... 90
7.2.3 Section Headers ... 90
7.2.4 Section Data... 92
7.2.5 Section Relocation Information ... 92
7.2.6 Line Numbers Information... 94
7.2.7 Symbol Table Information ... 94
7.2.8 String Table Information ... 97

7.3 ASSEMBLER AND LINKER PROCESS OF RELOCATION .. 97
7.4 OBJECT-FILE FORMATS (OMAGIC, NMAGIC, ZMAGIC) ... 102

7.4.1 Impure Format (OMAGIC) Files... 103
7.4.2 Shared Text (NMAGIC) Files .. 104
7.4.3 Demand Paged (ZMAGIC) Files ... 105

8. REFERENCES ... 107

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 5/107

TABLE OF TABLES

Table 1-1. Register sets...10
Table 1-2. Exception types and codes ..27
Table 1-3. Interrupt priorities if external handler is used, 0 - highest30
Table 1-4. Build-in interrupt controller register ...31
Table 2-1. Backslash conventions ..34
Table 2-2. Supported operators in expressions...35
Table 2-3. Condition codes and mnemonics...36
Table 3-1. Abbreviations used in main instruction set ...39
Table 3-2. RTN notations used in Summary Tables...41
Table 3-3. Notations used in Summary Tables...42
Table 3-4. Summary of integer arithmetic instructions ..43
Table 3-5. Summary of byte and bit field manipulation instructions44
Table 3-6. Summary of Boolean bitwise operation instructions44
Table 3-7. Summary of jump instructions ..45
Table 3-8. Summary of integer comparision instructions ..45
Table 3-9. Summary of shift instructions ...46
Table 3-10. Summary of load, store and data moving instructions46
Table 3-11. Summary of miscellaneous instructions..47
Table 3-12. Extracted byte specification ..52
Table 3-13. Register set definition for writing and reading..62
Table 3-14. Permitted values for immediate constant ..67
Table 3-15. Instruction mapping in 16-bit and 32-bit mode.......................................74
Table 4-1. Abbreviations used in coprocessor instruction set75
Table 5-1. Section type conventions...82
Table 6-1. Register name and software used name mapping84
Table 7-1. File header information ...89
Table 7-2. Currently defined flags..90
Table 7-3. Section header information ...91
Table 7-4. Detailed s_flag explanation...91
Table 7-5. Section mode flags ..91
Table 7-6. Section contents flags..92
Table 7-7. Relocation entry information ..93
Table 7-8. Currently defined relocation types ..94
Table 7-9. Explanation of a bit form in relocation type ...94
Table 7-10. Symbol table information..95
Table 7-11. Description of a symbol name...95
Table 7-12. The meaning of n_scnum field..96
Table 7-13. Storage class field n_sclass values ..96
Table 7-14. The format of a auxiliary table entry...97

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 6/107

TABLE OF FIGURES

Figure 1-1. Main processor status register..11
Figure 1-2. Coprocessor status register ..23
Figure 1-3. Coprocessor control register ..24
Figure 1-4. Bit and byte order...25
Figure 3-1. Content of R0...52
Figure 7-1. The structure of the object file ...87
Figure 7-2. Predefined section raw data sequence..92
Figure 7-3. Symbols appearing sequence ...95
Figure 7-4. OMAGIC layout ..103
Figure 7-5. NMAGIC layout ..104
Figure 7-6. ZMAGIC dynamic layout ..105
Figure 7-7. ZMAGIC static layout ...106

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 7/107

 OVERVIEW

This manual is a user guide to the COFFEE ™ assembler crasm.
Here is a brief summary of how to invoke crasm. It is written with
Perl.

perl crasm [input_file] [-Include path|-I path] [[-
binary | -b] | [-hex | -h]] [-help|-h] [-list|-l] [-obj
output_file|-o output_file] [-symbols|-s] [-version|-v]
[-warnoff|-w] [--version|--v] [-Z]

input_file

Input file name. Extension isn’ t matter.

-binary

Create separate binary output files. Name of the text
segment file is name of the source file plus ‘_ts.bin’ . Name of the data
(and bss) segment file is name of the source file plus ‘_ds.bin’ .

-hex

Create separate hexadecimal output files. Name of the
text segment file is name of the source file plus ‘_ts.bin’ . Name of the
data (and bss) segment file is name of the source file plus ‘_ds.bin’ .

-Include path

Path (one) for include files. It is allowed to repeat option
as many times as needed. Search for include files is done in following
sequence: directory where is source file and then paths in order they
are defined.

-help

Print available options.

-list

Turn on listings. Name of the list file is name of the
source file with extension ‘ lst’ .

-obj filename

Define name of object-file. Default name is name of the
source file. Output file always have extension ‘out’ .

-symbols

Do not add local symbols in symbol table.

-warnoff

Suppress warning messages.

-version

Print version of assembler.

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 8/107

--version

Print version of assembler and exit.

-Z

Generate an object file even if error was found.

After the program name crasm, the command line may contain
options and file names. Options may appear in any order, and may be
before, after, or between file names. The order of file names is
insignificant.
All options should start with hyphen (‘-‘), except input file name. An
option is a ‘-‘ followed by one letter or full name; the case of the letter
is important. All options are optional. All options should be separated
by at least one space.
Some options expect exactly one file name (or path) to follow them.

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 9/107

1. ARCHITECTURE-BASED CONSIDERATIONS

This chapter describes programming considerations that are
determined by the COFFEE™ RISC core architecture. It addresses the
following topics:

• Registers (Section 1.1)
• Bit and Byte Ordering (Section 1.2)
• Addressing (Section 1.3)
• Exceptions (Section 1.4)
• Interrupts (Section 1.5)

1.1 Registers

This section discusses the registers that are available and describes
how memory organization affects them. See Section 6.1 for
information on register use and linkage.

1.1.1 Main Processor Registers

COFFEE™ RISC core has two different register sets for data shown
in Table 1-1. The first set (SET 1) is intended to be used by
application programs. The second set of registers (SET 2) is for
privileged software which could be an operating system or similar.
SET 2 is protected from application program. Privileged software can
access both sets. There are 32 registers in both sets including general
purpose registers (GPRs) and special purpose registers (SPRs).

In addition COFFEE™ has eight condition registers (CRs) which are
used with conditional branches or when executing instructions
conditionally. These are visible to application software as well as to
privileged software.

COFFEE™ has also one memory mapped register bank, CCB (core
control block). CCB is for controlling the processor operation and as
such should be configured by boot code. CCB also contains few status
registers. Note that, CCB can be extended with an external
configuration block.

The usage of general purpose registers is not restricted by hardware in
any way. See Section 6.1 or compiler documentation for more
information about register usage.

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 10/107

SET 1 SET 2

R0 GPR 32-bit PR0 GPR 32-bit
R1 GPR 32-bit PR1 GPR 32-bit
…
R28 GPR 32-bit PR28 GPR 32-bit
R29 GPR 32-bit PR29 PSR 32-bit
R30 GPR 32-bit PR30 SPSR 32-bit
R31 GPR/LR 32-bit PR31 GPR/LR 32-bit

Table 1-1. Register sets

1.1.1.1 SET 1 GPRs

SET 1 has 32 identical general purpose registers R0...R31 with one
exception: R31 is used as a link register (LR) with some instructions.
The programmer is free to use R31 for any other purpose as long as its
special behaviour is taken into account. All general purpose registers
(and the link register) are 32-bit wide.

1.1.1.2 SET 2 GPRs

SET 2 has 30 identical general purpose registers PR0...PR28 and
PR31 with one exception: PR31 is used as a link register by some
instructions. The programmer is free to use PR31 for any other
purpose as long as its special behaviour is taken into account. All
general purpose registers (and the link register) are 32-bit wide.

1.1.1.3 SET 2 SPRs

There is two special purpose registers in SET 2: PSR and SPSR. PSR
is 8-bit wide. When reading data from PSR the “non existent” bits are
read as zeros. Writing to a read only register (PSR) is ignored.

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 11/107

PSR (register index 29)

Processor Status Register is a read only register shown in
Figure 1-1 and contains the flags explained below. Bits 7
down to 5 are reserved for future extensions.

Figure 1-1. Main processor status register

IE = 1: Interrupts enabled, IE = 0: Interrupts disabled.
IL = 1: Instruction word length is 32 bits, IL = 0:
Instruction word length is 16 bits.
RSWR bit selects which register set to use as target:
RSWR = 1: SET2, super users set; RSWR = 0: SET1, users
set.
RSRD bit selects which register set to use as source:
RSRD = 1: SET2, super users set; RSRD = 0: SET1, users
set.
UM indicates which user mode the processor is in:
UM = 0: super user mode, UM = 1: user mode.
RESERVED: Read as zeros.

SPSR (register index 30)
SPRS is used to save PSR flags when changing user mode
by executing scall – instruction. It can also be used to
set mode flags for the user: IE and IL flags are copied
from SPSR to PSR when retu instruction is executed.
Note that bits 31 down to 5 are writable but only bits 7
down to 0 are saved in case of scall.

1.1.1.4 CRs

There are eight 3-bit wide condition registers C0...C7 (visible both to
application software and privileged software). Condition registers are
used with conditional branches or when executing instructions
conditionally. Each register contains three flags: Z (Zero), N
(Negative) and C (Carry). When executing compare instructions or
some arithmetic instructions these three flags are calculated and saved
to the selected CR (arithmetic instructions always save flags to C0).
When conditionally branching or executing, flags from the selected
CR are compared to match a certain condition given by the
programmer. See Chapter 3 for more information about instructions
and Section 2.9 for more information about conditional execution.

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 12/107

1.1.1.5 CCB registers

In the following, usage and organization of control and status registers
is explained. Few things worth noting are discussed first. The core
configuration block (CCB) is a memory mapped register bank, which
contains various registers for controlling the functionality of the core.
It also contains status registers, which cannot be written but are only
used by software for monitoring events. CCB registers are organized
as a continuous block, that is, memory addresses of the registers
reserve a continuous area from the address space. CCB reserves 256
consecutive memory addresses (“byte” addresses) starting from the
address defined in the first CCB register (the base address of the
block). CCB can be remapped anywhere in the address space by
writing a new value to CCB_BASE register. It is also possible to
extend the range of configuration registers by writing a suitable
address to CCB_END register: Memory accesses in address range
[CCB_BASE] + 256 to [CCB_END] are redirected to an external
block instead of memory.

Conventions and notes:
Unused bits in registers shorter than 32 bits will appear as zeros but
they should be masked by software for future compatibility. Bit
indexes range from 0 to 31, 0 corresponding to LSB. When referring
to bit positions we simply refer to bit indexes: A bit in position X
means a bit with index X. Offsets from 29H to FFH are reserved for
future extensions.

symbol: CCB_BASE[31..0]
offset: 0H
reset value: 0001000H
description: The contents of this register defines the base address of the

CCB block. 256 consecutive memory locations starting
from [CCB_BASE] are reserved for CCB registers. All
memory accesses in range [CCB_BASE] to [CCB_BASE]
+ 255 map to CCB registers.

notes: The base address has to be aligned to 256B boundary, that
is, bits 7 down to 0 has to be zeros. You need to have at
least one instruction between the one remapping the CCB
(st instruction) and one accessing CCB at new location.

symbol: REGSPC_END[31..0]
offset: 1H
reset value: 000100FFH
description: The contents of this register defines the last address of

register address space. All memory accesses in range
[CCB_BASE] + 256 to [CCB_END] map to an external
register block.

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 13/107

notes: Addresses [CCB_BASE] to [CCB_BASE] + 255 map to
CCB independent of the value in REGSPC_END. The
external register block may be any device connected to
data memory bus of COFFEE core.

symbol: COP0_INT_VEC[31..0]
offset: 2H
reset value: 00000001H
description: The contents of this register defines the entry address of an

interrupt service routine for coprocessor 0
interrupts/exceptions.

notes: See Section 1.5 for more information about interrupts.

symbol: COP1_INT_VEC[31..0]
offset: 3H
reset value: 00000001H
description: The contents of this register defines the entry address of an

interrupt service routine for coprocessor 1
interrupts/exceptions.

notes: See Section 1.5 for more information about interrupts.

symbol: COP2_INT_VEC[31..0]
offset: 4H
reset value: 00000001H
description: The contents of this register defines the entry address of an

interrupt service routine for coprocessor 2
interrupts/exceptions.

notes: See Section 1.5 for more information about interrupts.

symbol: COP3_INT_VEC[31..0]
offset: 5H
reset value: 00000001H
description: The contents of this register defines the entry address of an

interrupt service routine for coprocessor 3
interrupts/exceptions.

notes: See Section 1.5 for more information about interrupts.

symbol: EXT_INT0_VEC[31..0]
offset: 6H
reset value: 00000001H
description: The contents of this register defines the base address of an

interrupt service routine for external/timer interrupt
number 0.

notes: The entry address of the interrupt service routine can be
the base address directly or a combination of the base
address and an offset provided externally. See Section 1.5
for more information about interrupts.

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 14/107

symbol: EXT_INT1_VEC[31..0]
offset: 7H
reset value: 00000001H
description: The contents of this register defines the base address of an

interrupt service routine for external/timer interrupt
number 1.

notes: The entry address of the interrupt service routine can be
the base address directly or a combination of the base
address and an offset provided externally. See Section 1.5
for more information about interrupts.

symbol: EXT_INT2_VEC[31..0]
offset: 8H
reset value: 00000001H
description: The contents of this register defines the base address of an

interrupt service routine for external/timer interrupt
number 2.

notes: The entry address of the interrupt service routine can be
the base address directly or a combination of the base
address and an offset provided externally. See Section 1.5
for more information about interrupts.

symbol: EXT_INT3_VEC[31..0]
offset: 9H
reset value: 00000001H
description: The contents of this register defines the base address of an

interrupt service routine for external/timer interrupt
number 3.

notes: The entry address of the interrupt service routine can be
the base address directly or a combination of the base
address and an offset provided externally. See Section 1.5
for more information about interrupts.

symbol: EXT_INT4_VEC[31..0]
offset: AH
reset value: 00000001H
description: The contents of this register defines the base address of an

interrupt service routine for external/timer interrupt
number 4.

notes: The entry address of the interrupt service routine can be
the base address directly or a combination of the base
address and an offset provided externally. See Section 1.5
for more information about interrupts.

symbol: EXT_INT5_VEC[31..0]
offset: BH
reset value: 00000001H

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 15/107

descr iption: The contents of this register defines the base address of an
interrupt service routine for external/timer interrupt
number 5.

notes: The entry address of the interrupt service routine can be
the base address directly or a combination of the base
address and an offset provided externally. See Section 1.5
for more information about interrupts.

symbol: EXT_INT6_VEC[31..0]
offset: CH
reset value: 00000001H
descr iption: The contents of this register defines the base address of an

interrupt service routine for external/timer interrupt
number 6.

notes: The entry address of the interrupt service routine can be
the base address directly or a combination of the base
address and an offset provided externally. See Section 1.5
for more information about interrupts.

symbol: EXT_INT7_VEC[31..0]
offset: DH
reset value: 00000001H
descr iption: The contents of this register defines the base address of an

interrupt service routine for external/timer interrupt
number 7.

notes: The entry address of the interrupt service routine can be
the base address directly or a combination of the base
address and an offset provided externally. See Section 1.5
for more information about interrupts.

symbol: INT_MODE_IL[11..0]
offset: EH
reset value: FFFH
descr iption: The contents of this register defines whether the interrupt

service routines should be executed in 16 bit mode or in 32
bit mode. A high bit (’1’) causes the core to switch to 32
bit mode when entering the interrupt service routine in
question, a low bit (’0’) indicates execution of the service
routine in 16 bit mode. Bit positions are associated to
interrupt sources as follows:
bit 0 – coprocessor 0, bit 1 – coprocessor 1, bit 2 –
coprocessor 2,
bit 3 – coprocessor 3, bit 4 – interrupt 0, bit 5 – interrupt
1,
bit 6 – interrupt 2, bit 7 – interrupt 3, bit 8 – interrupt 4,
bit 9 – interrupt 5, bit 10 – interrupt 6, bit 11 – interrupt 7

notes: See Section 1.5 for more information about interrupts and
Chapter 4 for more information about coprocessor.

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 16/107

symbol: INT_MODE_UM[11..0]
offset: FH
reset value: FFFH
description: The contents of this register defines whether the interrupt

service routines should be executed in user mode or in
super-user mode. A high bit (’1’) causes the core to switch
to user mode when entering the interrupt service routine in
question; a low bit (’0’) indicates execution of the service
routine in super-user mode. Bit positions are associated to
interrupt sources as follows:

 bit 0 – coprocessor 0, bit 1 – coprocessor 1, bit 2 –
coprocessor 2,
bit 3 – coprocessor 3, bit 4 – interrupt 0, bit 5 – interrupt
1,
bit 6 – interrupt 2, bit 7 – interrupt 3, bit 8 – interrupt 4,
bit 9 – interrupt 5, bit 10 – interrupt 6, bit 11 – interrupt 7

notes: See Section 1.5 for more information about interrupts and
Chapter 4 for more information about coprocessor.

symbol: INT_MASK[11..0]
offset: 10H
reset value: 000H
description: Bits in this register can be used to block interrupts from

individual sources. A low bit (’0’) causes interrupt requests
from the corresponding source to be blocked. A high bit
(’1’) allow requests to pass through. Bit positions are
associated to interrupt sources as follows:

 bit 0 – coprocessor 0, bit 1 – coprocessor 1, bit 2 –
coprocessor 2,
bit 3 – coprocessor 3, bit 4 – interrupt 0, bit 5 – interrupt
1,
bit 6 – interrupt 2, bit 7 – interrupt 3, bit 8 – interrupt 4,
bit 9 – interrupt 5, bit 10 – interrupt 6, bit 11 – interrupt 7

notes: This mask register does not prevent interrupt requests from
entering the INT_PEND register.

symbol: INT_SERV[11..0]
offset: 11H
reset value: 000H
description: This is a read-only status register having a flag for each

interrupt source. A high flag (’1’) means that an interrupt
request from the corresponding source has been accepted.
In practice this means that the interrupt service routine is
being executed or it was executed until another request
with higher priority interrupted the service routine. In this
case there is multiple flags high in the INT_SERV register.
Executing reti instruction at the end of an interrupt

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 17/107

service routine will cause the corresponding flag to go low.
Bit positions are associated to interrupt sources as follows:

 bit 0 – coprocessor 0, bit 1 – coprocessor 1, bit 2 –
coprocessor 2,
bit 3 – coprocessor 3, bit 4 – interrupt 0, bit 5 – interrupt
1,
bit 6 – interrupt 2, bit 7 – interrupt 3, bit 8 – interrupt 4,
bit 9 – interrupt 5, bit 10 – interrupt 6, bit 11 – interrupt 7

notes: See Section 1.5 for more information about interrupts.

symbol: INT_PEND[11..0]
offset: 12H
reset value: 000H
description: This is a read-only status register having a flag for each

interrupt source. A high flag (’1’) means that an interrupt
request from the corresponding source has been detected
and is waiting to get accepted. A flag is lowered once the
request is accepted and the service routine started. Bit
positions are associated to interrupt sources as follows:

 bit 0 – coprocessor 0, bit 1 – coprocessor 1, bit 2 –
coprocessor 2,
bit 3 – coprocessor 3, bit 4 – interrupt 0, bit 5 – interrupt
1,
bit 6 – interrupt 2, bit 7 – interrupt 3, bit 8 – interrupt 4,
bit 9 – interrupt 5, bit 10 – interrupt 6, bit 11 – interrupt 7

notes: See Section 1.5 for more information about interrupts or
additional interrupt document on how to clear the
INT_PEND register by software.

symbol: EXT_INT_PRI[31..0]
fields: PRI7[31..28], PRI6[27..24], PRI5[23..20], PRI4[19..16],

PRI3[15..12], PRI2[11..8], PRI1[7..4], PRI0[3..0]
offset: 13H
reset value: 00000000H
description: This register is used to set priorities for external interrupt

sources. Each interrupt source is associated with a four bit
unsigned value in range from 0 to 15, 0 meaning highest
priority. Bitfield PRIX is associated with external interrupt
number X. X ranges from 0 to 7.

notes: Internal timers of COFFEE can be configured to generate
interrupts in which case the timer in question is associated
to one of the external interrupts => priority of a timer
interrupt shall also be set using EXT_INT_PRI register.
See Section 1.5 for more information about interrupts.

symbol: COP_INT_PRI[15..0]
offset: 14H

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 18/107

fields: PRI3[15..12], PRI2[11..8], PRI1[7..4], PRI0[3..0]
reset value: 0000H
description: This register is used to set priorities for coprocessor

interrupts/exceptions. Each coprocessor is associated with
a four bit unsigned value in range from 0 to 15, 0 meaning
highest priority. Bitfield PRIX is associated with
coprocessor number X. X ranges from 0 to 3.

notes: See Section 1.5 for more information about interrupts.

symbol: EXCEPTION_CS[7..0]
offset: 15H
reset value: 00H
description: This is a read-only register which is used to report the

cause of an exception to an exception handler.
notes: See Section 1.5 for more information about interrupts.

symbol: EXCEPTION_PC[31..0]
offset: 16H
reset value: 00000000H
description: This is a read-only register which is used to report the

memory address of the instruction which caused an
exception. Can be used by exception handler.

notes: See Section 1.5 for more information about interrupts.

symbol: EXCEPTION_PSR[7..0]
offset: 17H
reset value: 00H
description: Contains a copy of processor status flags (PSR) which

were valid when the instruction causing an exception was
decoded. Can be used by exception handler.

notes: See Section 1.4 for more information about exceptions.

symbol: DMEM_BOUND_LO[31..0]
offset: 18H
reset value: 00000000H
description: This register is used to set the lower limit of a continuous

address space for data memory protection. Accesses inside
the area defined together with DMEM_BOUND_HI
register are either allowed in user mode or blocked while
in user mode (allowing accesses outside the area only)
depending on memory protection flags in MEM_CONF
register. In super user mode the whole address space is
accessible.

notes: The CCB block itself can be protected from user level
code by mapping it to protected address space. See
Chapter 6 for more details about programming
considerations.

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 19/107

symbol: DMEM_BOUND_HI[31..0]
offset: 19H
reset value: FFFFFFFFH
description: This register is used to set the upper limit of a continuous

address space for data memory protection. Accesses inside
the area defined together with DMEM_BOUND_LO
register are either allowed in user mode or blocked while
in user mode (allowing accesses outside the area only)
depending on memory protection flags in MEM_CONF
register. In super user mode the whole address space is
accessible.

notes: The CCB block itself can be protected from user level
code by mapping it to protected address space. See
Chapter 6 for more details about programming
considerations.

symbol: IMEM_BOUND_LO[31..0]
offset: 1AH
reset value: 00000000H
description: This register is used to set the lower limit of a continuous

address space for instruction memory protection. Fetching
instructions from addresses inside the area defined together
with IMEM_BOUND_HI register are either allowed in
user mode or blocked while in user mode (allowing
accesses outside the area only) depending on memory
protection flags in MEM_CONF register. In super user
mode the whole address space is accessible.

notes: See Chapter 6 for more details about programming
considerations.

symbol: IMEM_BOUND_HI[31..0]
offset: 1BH
reset value: FFFFFFFFH
description: This register is used to set the upper limit of a continuous

address space for instruction memory protection. Fetching
instructions from addresses inside the area defined together
with IMEM_BOUND_LO register are either allowed in
user mode or blocked while in user mode (allowing
accesses outside the area only) depending on memory
protection flags in MEM_CONF register. In super user
mode the whole address space is accessible.

notes: See Chapter 6 for more details about programming
considerations.

symbol: MEM_CONF[1..0]
offset: 1CH
reset value: 3H

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 20/107

description: This register contains flags which control the protection of
address spaces defined by the contents of registers
DMEM_BOUND_LO, DMEM_BOUND_HI,
IMEM_BOUND_LO, IMEM_BOUND_HI. Flag in the bit
position 0 controls protection of instruction memory and
flag in the bit position 1 controls protection of data
memory. If the respective flag is high (’1’) the address
space between the low and high boundaries (boundaries
included) is not allowed to be accessed in user mode. If the
flag is low (’0’) then only the address space between the
limits (boundaries included) is allowed to be accessed in
user mode.

notes: See Chapter 6 for more details about programming
considerations.

symbol: SYSTEM_ADDR[31..0]
offset: 1DH
reset value: 00000001H
description: The contents of this register defines the entry address of

system call handler. When executing scall instruction the
address in this register wil l be loaded to program counter.

notes:

symbol: EXCEP_ADDR[31..0]
offset: 1EH
reset value: 00000001H
description: The contents of this register defines the entry address of an

exception handler. When an instruction causes an illegal
event the address in this register will be loaded to program
counter.

notes: See Section 1.4 for more information about exceptions.

symbol: BUS_CONF[11..0]
fields: CBUS_WC[11..8], DBUS_WC[7..4], IBUS_WC[3..0],
offset: 1FH
reset value: FFFH
description: This register is used to set the amount of wait cycles per

bus access. Data memory, instruction memory and
coprocessor buses can be configured separately. The
number of wait cycles can be set to a value in range 0 to
15. Bit fields are associated to different buses as follows:
CBUS_WC – coprocessor bus, DBUS_WC – data
memory bus, IBUS_WC – instruction memory bus. For
maximum performance, number of access cycles (start
cycle + wait cycles) should be set to smallest possible
value. With zero wait cycles; the memory/coprocessor in
question has to be able to respond in shorter time than one
clock cycle (asynchronous operation).

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 21/107

notes: See COFFEE interface document.

symbol: COP_CONF [27..0]
fields: C3_IF[27..26], C2_IF[25..24], C1_IF[23..22],

C0_IF[21..20], C3_IR[19..15], C2_IR[14..10],
C1_IR[9..5], C0_IR[4..0]

offset: 20H
reset value: 0000000H
description: This register is used to configure the behaviour of

coprocessor interface. The coprocessor interface can
operate in COFFEE native mode or MIPS compliant mode.
The mode can be selected for each coprocessor separately:
C3_IF – interface mode of coprocessor 3, C2_IF –
interface mode of coprocessor 2, C1_IF – interface mode
of coprocessor 1, C0_IF – interface mode of coprocessor
0. Use value 0 for COFFEE native mode and value 1 for
MIPS mode.

 Fields C0_IR through C3_IR specify index of the

instruction register of the coprocessor in question. When
COFFEE core encounters a coprocessor instruction it
writes the instruction word to coprocessor bus and drives
cop_rgi signal according to corresponding CX_IR field.
A value from 0 to 31 can be specified. Fields are
associated to coprocessors as follows: C3_IR –
coprocessor 3 instruction register, C2_IR – coprocessor 2
instruction register, C1_IR – coprocessor 1 instruction
register, C0_IR – coprocessor 0 instruction register.

notes: In COFFEE core version 1.0 only COFFEE native mode is
supported (CX_IF fields are ignored)

symbol: TMR0_CNT[31..0]
offset: 21H
reset value: 00000000H
description: This register contains the current value of the internal

timer counter 0. Can be used to set initial value to counter
0.

notes: See document about timers.

symbol: TMR0_MAX_CNT[31..0]
offset: 22H
reset value: 00000000H
description: This register is used to define maximum value for timer

counter 0. After reaching maximum value the counter will
be loaded with zero. A value greater than defined by this
register can be written to TMR0_CNT in which case the
counter will count to FFFFFFFFH before starting from
zero.

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 22/107

notes: See document about timers.

symbol: TMR1_CNT[31..0]
offset: 23H
reset value: 00000000H
description: This register contains the current value of the internal

timer counter 1. Can be used to set initial value to counter
1.

notes: See document about timers.

symbol: TMR1_MAX_CNT[31..0]
offset: 24H

reset value: 00000000H
description: This register is used to define maximum value for timer

counter 1. After reaching maximum value the counter will
be loaded with zero. A value greater than defined by this
register can be written to TMR1_CNT in which case the
counter will count to FFFFFFFFH before starting from
zero.

notes: See document about timers.

symbol: TMR_CONF[31..0]
fields: TMR1_CONF[31..16], TMR0_CONF[15..0]
offset: 25H
reset value: 00000000H
description: This register is used to configure both internal timers:

timer0 and timer1. See the timer document for explanation
of bit-fields in TMR1_CONF and TMR0_CONF.

notes: See document about timers.

symbol: RETI_ADDR[31..0]
offset: 26H
reset value: FFFFFFFFH
description: The address in this register will be loaded to program

counter when executing reti instruction. When entering
an interrupt service routine this register contains a valid
return address by default. Return to different address can
be forced by writing the desired return address to this
register before executing reti.

notes: Interrupts should be disabled when writing to this register.
See Section 1.5 for more information about interrupts.

symbol: RETI_PSR[7..0]
offset: 27H
reset value: 0EH
description: The contents of this register will be written to PSR

register when executing reti instruction. When entering
an interrupt service routine this register contains PSR flags

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 23/107

from the interrupted context. Return with modified flags
can be forced by writing the desired flags to this register
before executing reti.

notes: Interrupts should be disabled when writing to this register.
See Section 1.5 for more information about interrupts.

symbol: RETI_CR0[2..0]
offset: 28H
reset value: 0H
description: The contents of this register will be written to flag register

C0 when executing reti instruction. When entering an
interrupt service routine this register contains C0 flags
from the interrupted context. Return with modified flags
can be forced by writing the desired flags to this register
before executing reti.

notes: Interrupts should be disabled when writing to this register.
See Section 1.5 for more information about interrupts.

1.1.2 Coprocessor Registers

Milk coprocessor has 8 general purpose 32-bit registers for arithmetic
operands and results storage. Two special purpose registers are present
in the architecture: status register and control register.

1.1.2.1 Status Register

It' s a 32-bit register shown in Figure 1-2.

Figure 1-2. Coprocessor status register

Bits 31..14 are not used in the current implementation, and it' s
assumed they all are zeroes.
Bits 13..7 are the flag bits related to floating-point exceptions, and
they refer to the whole computation since last reset or last writing
from user.
Bits 6..0 are the same flags, but they refer to the last executed
instruction only.

1.1.2.2 Control Register

The content of the control register is shown in Figure 1-3.

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 24/107

Figure 1-3. Coprocessor control register

Bits 31..26 contain the encoding of the cop instruction of COFFEE™
RISC core.
Bits 25..24 are used to index one among the 4 coprocessors that can be
attached to COFFEE™ RISC core.
Bits 23..22 are unused.
Bit 21 specifies the floating-point precision. Milk coprocessor
currently supports only single precision, and this bit is always 0.
Bits 20..16 are the address of the second operand' s source register.
When the current instruction supports only on operand this field is
ignored. Note that since only 8 registers are present in the architecture,
bits 20 and 19 are not used.
Bits 15..11 are the address of the first operand' s source register. Note
that since only 8 registers are present in the architecture, bits 15 and
14 are not used.
Bits 10..6 are the address of the destination' s register. Note that since
only 8 registers are present in the architecture, bits 10 and 9 are not
used.
Bits 5..0 are the opcode of the current instruction performed by Milk.

1.2 Bit and Byte Ordering

A system' s byte ordering scheme, or endian scheme, affects memory
organization and defines the relationship between address and byte
position of data in memory:

• Big-endian systems store the sign bit in the lowest address byte
• Little-endian systems store the sign bit in the highest address

byte

COFFEE™ RISC uses the big-endian byte scheme. Byte ordering is
as follows:

• The bytes of a longword (64-bit) are numbered from 0 to 7.
Byte 0 holds the sign and most significant bits

• The bytes of a word (32-bit) are numbered from 0 to 3. Byte 0
holds the sign and most significant bits

• The bytes of a halfword (16-bit) are numbered from 0 to 1.
Byte 0 holds the sign and most significant bits

The bits of each byte are numbered from 7 to 0, using the format
shown in Figure 1-4.

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 25/107

longword
Bit: 63 .. 56 55 .. 48 47 .. 40 39 .. 32 31 .. 24 23 .. 16 15 .. 8 7 .. 0

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7

 sign and most
 significant bits

word
 Bit: 31 .. 24 23 .. 16 15 .. 8 7 .. 0

byte 0 byte 1 byte 2 byte 3

 sign and most
 significant bits

halfword
 Bit: 15 .. 8 7 .. 0

byte 0 byte 1

 sign and most
 significant bits

byte
 Bit: 7 6 5 4 3 2 1 0

 most least
 significant bit significant bit

Figure 1-4. Bit and byte order

1.3 Addressing

COFFEE core can only address full words. This is alleviated by
providing special instructions for fast extraction and merging of
bytes/halfwords. Based addressing is supported by hardware while
others must be synthesized by software. Two instructions are provided
for accessing data in memory: ld for loading a word from memory
and st for storing a word to memory. See Chapter 3 for more
information about main instruction set.

1.4 Exceptions

In this document an exception means an event that will halt the
processing in the current context immediately and cause the core to
switch to an exception handling routine. An exception is considered
an error condition and has to be dealt with immediately. Exceptions
are listed in Table 1-2.
An instruction causing an exception is canceled and execution of an
exception handler is started at an address defined in CCB register
EXCEP_ADDR. Before switching to the exception handler status
information is saved to following CCB registers:

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 26/107

EXCEPTION_PC – memory address of the violating instruction,
EXCEPTION_PSR – PSR flags used to when decoding violating
instruction, EXCEPTION_CS – Exception code, see table below.
The exception handler will be started in superuser mode, interrupts
disabled.

Note that very often in literature an exception means interrupting the
processor in general. See also Section 1.5 for information about
interrupts.

For more information about exceptions see additional exception
documentation.

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 27/107

Code Name Description
0 Instruction address

violation1
While in user mode, instruction is fetched from
memory address not allowed for user

1 Unknown opcode Version 1.0 of COFFEE™ RISC does not have
any unused opcodes which makes this obsolete

2 Illegal instruction While in 16-bit mode, trying to execute an
instruction which is valid only in 32-bit mode
or trying to execute a superuser only instruction
in user mode

3 Miss aligned jump
address2

Calculated jump target is not aligned to word
(32-bit mode) or halfword (16-bit mode)
boundary

4 Jump address
overflow

A PC relative jump below the bottom of the
memory or above the top of the memory

5 Miss aligned
instruction address3

Instruction address is not aligned according to
mode, this can be caused by:

• External boot address was not aligned
to word boundary

• An interrupt vector is not properly
aligned or interrupt mode is not
correctly set

• System entry address is not aligned to
word boundary

224...255 trap4 Processor encountered a trap instruction
6 Arithmetic

overflow
The result of a signed arithmetic operation
exceeds 231 - 1 or falls below -231

7 Data address
violation

While in user mode, a data address refers to
memory address nor allowed for user

8 Data address
overflow

Trying to index data below the bottom or above
the top of the memory

9 Illegal jump Trying to jump to protected instruction memory
area while in user mode

10...15 Reserved for future extensions

Table 1-2. Exception types and codes

Notes for Table 1-2:
1 If sequential execution traverses the boundary of the protected
instruction memory area, the address of the instruction pointed to is
saved.
2 A jump between memory areas using different encoding wil l result
in unpredictable behaviour.
3 In this case, the address is saved, since it cannot be known which
instruction (if any) caused the exception.
4 For software exceptions (such as division by zero, or array bounds
exceeded). Exception address will point to trap instruction. Note, that
you cannot generate hardware exceptions using trap instruction
because trap code wil l be padded with ones.

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 28/107

1.5 Interrupts

In this document an interrupt is defined as an event that causes
hardware assisted context switch because an external/internal device is
requesting time from CPU (Central Processing Unit). This is the
normal way to interrupt a processor. Interrupt requests can originate,
for example, from a timer or an external IO (Input/Output) device,
coprocessor etc. This section covers the built-in interrupt controller of
COFFEE™ core.

COFFEE™ core supports connecting eight external interrupt sources
directly. If coprocessors are not connected, four inputs reserved for
coprocessor exception signall ing can be used as interrupt request lines
giving possibility to connect twelve sources directly. Built-in timers
can also be configured to generate interrupts. This feature can be used
for example to switch execution to an operating system kernel in
multitasking systems.

All interrupts are vectored. Interrupt vectors reside in CCB. With
built-in interrupt controller the entry address of an interrupt service
routine is the corresponding vector directly. If an external controller is
used the entry address is combination of the vector and an offset given
externally: ISR_ENTRY = BASE + (OFFSET x 16), where

BASE = EXT_INTX_VEC[31..12],
OFFSET = provided by an external controller,
ISR_ENTRY = entry address of an interrupt service routine.

Once an interrupt request is detected, it is saved in a register called
INT_PEND, which is visible via CCB. In order to interrupt the core, a
pending request has to pass priority check and masking. To pass, the
following conditions have to be valid: IE flag in processor status
register must be set, Interrupt mask register (INT_MASK) has to have
a high bit (‘1’) in the corresponding position, no interrupts with higher
priority are pending or in service, and instructions currently on
pipeline do not cause exceptions. Once a pending request gets
through, the control unit of COFFEE™ core will initiate context
switch as soon as possible.

The following steps are taken when switching to an interrupt service
routine. Return address, processor status register and condition
register C0 are saved to hardware stack. (The top of the hardware
stack is visible as three separate registers in CCB). The start address
of an interrupt service routine is calculated and written to the program
counter. The bit corresponding to the interrupt source is set in
INT_SERV register and cleared from INT_PEND register. Further
interrupts are disabled by clearing IE flag from PSR. Signal
INT_ACK is pulsed to inform an external interrupt controller that a

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 29/107

request got through and is now in service. Finally, execution of an
interrupt service routine is started in mode defined by CCB registers
INT_MODE_IL and INT_MODE_UM.

Returning from an interrupt service routine is done by executing reti
instruction. Execution of reti instruction causes the state of the core
to be restored from hardware stack. By default, execution resumes
from the address, which was saved to hardware stack when entering
service routine. If execution is desired to be resumed from a different
context the hardware stack can be modified by writing suitable values
to CCB registers RETI_ADDR, RETI_PSR and RETI_CR0. Signal
INT_DONE is pulsed to inform an external interrupt controller that
handling the latest acknowledged request has ended. The
corresponding bit is cleared from INT_SERV register.

Priorities between interrupt sources can be set by software via CCB
registers. Interrupt sources can be masked individually via CCB mask
register and disabled or enabled all at once using di and ei
instructions. If internal interrupt handler is used, the priorities
between sources can be set by software, with external handler,
priorities will be fixed according to Table 1-3. Note that priorities for
coprocessor exceptions/interrupts can always be set by software. If
multiple sources have the same priority, resolving is performed
internally in the following order (COP0_INT having the highest
priority):
COP0_INT, COP1_INT, COP2_INT, COP3_INT,
EXT_INT0, EXT_INT1, EXT_INT2, EXT_INT3,
EXT_INT4, EXT_INT5, EXT_INT6, EXT_INT7.

A request with higher priority can interrupt the current service routine
if interrupts have been re-enabled in the routine with ei instruction
(nesting of interrupts).

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 30/107

Priority Name

Coprocessor number 0 exception/interrupt
Coprocessor number 1 exception/interrupt
Coprocessor number 2 exception/interrupt

Software
controlled

Coprocessor number 3 exception/interrupt
15 External interrupt 0
15 External interrupt 1
15 External interrupt 2
15 External interrupt 3
15 External interrupt 4
15 External interrupt 5
15 External interrupt 6
15 External interrupt 7

Table 1-3. Interrupt priorities if external handler is used, 0 - highest

Do not do this!

Do not change interrupt priorities while in interrupt service routine if
you use nested interrupts (unless you are 100% sure that a new request
from a source cannot arise before a service routine is finished). In
extreme cases this can lead to hardware stack overflow if interrupt
nesting level is twelve and priorities are changed so that multiple
requests from a single source can be active simultaneously. Normally
an interrupt service routine cannot be interrupted by a new request
from the same source because of priority resolving.

In Table 1-4 is a summary of the registers of the built-in interrupt
controller. All the registers are accessed via CCB. See Section 1.1 for
more information about registers.

For more information about interrupts see additional interrupt
documentation.

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 31/107

Symbol Usage
COP0_INT_VEC Entry address of an interrupt service routine for coprocessor 0.
COP1_INT_VEC Entry address of an interrupt service routine for coprocessor 1.
COP2_INT_VEC Entry address of an interrupt service routine for coprocessor 2.
COP3_INT_VEC Entry address of an interrupt service routine for coprocessor 3.
EXT_INT0_VEC Base/entry address of an interrupt service routine for interrupt 0.
EXT_INT1_VEC Base/entry address of an interrupt service routine for interrupt 1.
EXT_INT2_VEC Base/entry address of an interrupt service routine for interrupt 2.
EXT_INT3_VEC Base/entry address of an interrupt service routine for interrupt 3.
EXT_INT4_VEC Base/entry address of an interrupt service routine for interrupt 4.
EXT_INT5_VEC Base/entry address of an interrupt service routine for interrupt 5.
EXT_INT6_VEC Base/entry address of an interrupt service routine for interrupt 6.
EXT_INT7_VEC Base/entry address of an interrupt service routine for interrupt 7.
INT_MODE_IL Instruction decoding mode flags for interrupt routines.

INT_MODE_UM User mode flags for interrupt routines.
INT_MASK Mask register for blocking requests.
INT_SERV Interrupt service status bits (read-only).
INT_PEND Pending interrupt requests (read-only).

EXT_INT_PRI Register for defining priorities of interrupt requests.
COP_INT_PRI Register for defining priorities of interrupt requests from

coprocessors.
RETI_ADDR Top of hardware stack, program counter of an interrupted context.

RETI_PSR Top of hardware stack, processor status of an interrupted context.
RETI_CR0 Top of hardware stack, condition register C0 of an interrupted

context.

Table 1-4. Build-in interrupt controller register

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 32/107

2. LEXICAL CONVENTIONS

This chapter describes lexical conventions associated with the
following items:

• Blank and Tab Characters (Section 2.1)
• Comments (Section 2.2)
• Identifiers (Section 2.3)
• Constants (Section 2.4)
• Physical lines (Section 2.5)
• Statements (Section 2.6)
• Expressions (Section 2.7)
• Macros (Section 2.8)
• Conditional Execution (Section 2.9)
• Sections (Section 2.10)
• Location Counters (Section 2.11)
• Relocations (Section 2.12)

2.1 Blank and Tab Characters

You can use blank and tab characters anywhere between operators,
identifiers, and constants. Adjacent identifiers or constants that are not
otherwise separated must be separated by a blank or tab.
These characters can also be used within character constants;
however, they are not allowed within operators and identifiers

2.2 Comments

The double slash (//) and semicolon (;) introduces a comment.
Comments that start with a ‘//’ (or ‘;’) extend through the end of the
line on which they appear.
Block comments are not supported.

2.3 Identifiers

An identifier consists of a case-sensitive sequence of alphanumeric
characters (A-Z, a-z, 0-9) and the following special character:

• . (period)

Identifiers can be up to 31 characters long, and the first character
cannot be numeric (0-9).
If an undefined identifier is referenced, the assembler assumes that the
identifier is an external symbol. The assembler treats the identifier like
a name specified by a .global directive (see Chapter 5 for more
information about directives).

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 33/107

If the identifier is defined to the assembler and the identifier has not
been specified as global, the assembler assumes that the identifier is a
local symbol.

2.4 Constants

The assembler supports the following constants:
• Scalar constants (Section 2.4.1)
• Floating-point constants (Section 2.4.2)
• String constants (Section 2.4.3)

2.4.1 Scalar Constants

The assembler interprets all scalar constants as two' s complement
numbers. Scalar constants can be any of the digits
0123456789abcdefABCDEF.
Scalar constants can be decimal, binary, hexadecimal, or octal
constants:

• Decimal constants consist of a sequence of decimal digits (0-9)
without a leading zero.

• Binary constants consist of the characters 0b (or 0B) followed
by a sequence of binary digits (01).

• Hexadecimal constants consist of the characters 0x (or 0X)
followed by a sequence of hexadecimal digits (0-
9abcdefABCDEF).

• Octal constants consist of the characters 0c (or 0C) followed
by a sequence of octal digits (0-7).

2.4.2 Floating-Point Constants

Floating-point constants can appear only in floating-point directives
(see Chapter 5 for more information about directives) and in the
coprocessor floating-point instructions (see Chapter 4 for more
information about coprocessor instructions). Floating-point constant
should be defined like follows: digit zero followed by f/F followed by
sign (optional) followed by integer1 (represents fraction part)
followed by e/E followed by sign of exponent (optional) and finally an
integer2 representing exponent:

0f|F[+|-]<integer1>e|E[+|-]<integer2>

For example, the number .02173 should be represented as follows:

.float 0F2173E-5

Hexadecimal floating-point constants are not supported.

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 34/107

The assembler does not use any rounding mode to convert floating-
point constants.

2.4.3 String Constants

All characters except the newline character are allowed in string
constants. String constants begin and end with double quotation marks
(”).
The assembler observes some of the backslash conventions used by
the C language. Table 2-1 shows the assembler' s backslash
conventions.

Convention Meaning
\n Newline (0x0a)
\0 End of string (0x00)
\r Carriage return (0x0d)
\t Horizontal tab (0x09)
\\ Backslash (0x05)
\” Quotation mark (0x22)

Table 2-1. Backslash conventions

2.5 Multiple Lines per Physical Line

You cannot include multiple statements on the same line.

2.6 Statements

The assembler supports the following types of statements:
• Null statements
• Keyword statements

Each keyword statement can include an optional label, an operation
code (mnemonic or directive), and zero or more operands (with an
optional comment following the last operand on the statement):

[label:] opcode operand [// | ; comment]

2.6.1 Labels

A label definition consists of an identifier followed by a colon (:).
(See Section 2.3 for the rules governing identifiers.) Label definitions
assign the current value and type of the location counter to the name.
An error results when the name is already defined.
A label definition always ends with a colon. You can put a label
definition on a line by itself.
Numeric labels are not supported.

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 35/107

2.6.2 Null Statement

A null statement is an empty statement that the assembler ignores.
Null statements can have label definitions. For example:

label: // some comment

2.6.3 Keyword Statement

A keyword statement contains a predefined keyword. The syntax for
the rest of the statement depends on the keyword. Keywords are either
assembler instructions (mnemonics) or directives.
Assembler instructions in the main instruction set and the coprocessor
instruction set are described in Chapter 3 and Chapter 4, respectively.
Assembler directives are described in Chapter 5.

2.7 Expressions

An expression is a sequence of symbols and operations that represents
a value. An expression specifies a numeric value. This value can be an
address, immediate value, or constant. Arguments can be constants or
symbols.

operator description
* multiplication
/ division
+ addition
- subtraction
() grouping parenthesis

Table 2-2. Supported operators in expressions

2.8 Macros

It is possible to define macro with .macro directive. Macro should
finish with .endm directive.
In second line of macro it is possible to define local macro labels
using directive .local.
Macro can have parameters. Two macros cannot have the same name.
Number of call parameters and defined parameters should be the
same. See Chapter 5 for more information about directives.

2.9 Conditional Execution

Conditional execution syntax is as follows:

if (cond, cr) instruction

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 36/107

where cond is as specified in the Table 2-3 and cr is c0, c1, c2, c3, c4,
c5, c6 or c7.

Conditional execution isn’t allowed in 16-bit mode. Just if condition
register is C0, conditional execution is not a syntax error in 16-bit
mode, but is expanded like this:

bcond 4
nop
instruction

mnemonic condition explanation code flags

c carry Carry out of MSB 000 C = 1
eq = equal 011 Z = 1
gt > greater than 100 Z = 0 & N = 0
lt < less than 101 Z = 0 & N = 1
ne ≠ not equal 110 Z = 0
elt ≤ equal or less than 010 Z = 1 or N = 1
egt ≥ equal or greater than 001 Z = 1 or N = 0
nc !carry No carry-out 111 C = 0

 Table 2-3. Condition codes and mnemonics

2.10 Sections

Default sections and their usual meanings:
• .bss (block started by symbol) – zero initialized data (and

uninitialized data)
• .text – PC relative stuff (might be code, might be data)
• .data – initialized data
• .rdata – read-only data

User is able to define additional sections using .section directive.
These could be used to allocate some “special” data or code. See
Chapter 5 for more information about directives.
Subsections (e.g., .text 0text N) aren’t supported.

Absolute section can be defined like this:

.section OS_SEC, d, 0xABCD0000

.section OS_SEC, 0xABCD0000

.data 0x10000000

When an assembler sees one of the section directives: .bss, .text,
.data, .rdata or .section it switches to a location counter of that
particular section (also to a working mode of that particular section).

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 37/107

If a section was not defined before in the current file, the location
counter in question is set to zero.

If none section is defined in 1st line, it is count to be text section.
Note: it is needed to define section mode using .c odeXX directive
immediately after section description directive. This creates internal
subsections depending on coding mode. All subsections in output file
are in the same order like in source file and have own section header
(See Section 7.2.3 for more information about section header).
If mode isn’t set, it is assumed to be 32-bit mode, but then Instruction
Simulator wil l not work properly.

Section order in output file is shown in Figure 7-2.
See Chapter 7 for more information about COFF output file.

2.11 Location Counter

The smallest addressable unit is assumed to be one byte, which means,
that any location counter (each section has a location counter) is
incremented by an amount equal to the amount of bytes produced by
an assembly language statement. For example, the following statement
produces 12 bytes and increments the location counter by 12:

.a scii “H ello w orld \ 0”

Following statement increments the locations counter by 4 if 32-bit
encoding is used and by 2 if 16-bit encoding is used:

addi R1, 0xff

COFFEE™ core does not support byte accesses even though software
tools expect it to! To make this work we throw away two address bits
and say goodbye to 16GB address space where each consecutive
address refers to 32-bit word. Note: there are SEVERE
LIMITATIONS.

The assembler is not expected to automatically align data allocations;
it gives error messages of miss-aligned cases. Words should start on
word boundary, halfwords on halfword boundary. Byte can be
anywhere (byte boundary). 32-bit instructions should start on word
boundary. 16-bit instruction should start on halfword boundary.
See Chapter 5 for more information about directives .o r g and
.a l ign .

Assembler does some alignment on end of section.

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 38/107

2.12 Relocations

It is impossible to specify a relocation type explicitly in assembly
code. Assembler sets all types of relocation internally and produces
the special relocation information (assembler supports COFF format).
All relocation references are done with assumptions that all sections
starts on address 0x00.
See Section 7.2.5 for more details about relocation information.

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 39/107

3. MAIN INSTRUCTION SET

This chapter describes instruction notation and discusses assembler
instructions for the main processor. Chapter 4 describes coprocessor
notation and instructions.
Section 3.1 contains instruction set summary tables.
The assembler' s main instruction set contains the following classes of
instructions:

• Integer arithmetic instructions (Section 3.2)
• Byte and bit field manipulation instructions (Section 3.3)
• Boolean bitwise operation instructions (Section 3.4)
• Branch (conditional jump) instructions (Section 3.5)
• Jump instructions (Section 3.6)
• Integer comparison instructions (Section 3.7)
• Shift instructions (Section 3.8)
• Memory load and store, data moving instructions (Section 3.9)
• Coprocessor instructions (Section 3.10)
• Miscellaneous instructions (Section 3.11)
• Pseudo instructions (Section 3.12)

The abbreviations used this chapter are listed in Table 3-1.

Abbreviation Description
creg Condition register specifier

creg ∈{c0,c1,c2,c3,c4,c5,c6,c7}
cond Condition specifier, see table 2-3.

cond ∈{c,eq,gt,lt,ne,elt,egt,nc}
dreg, sreg,
sreg1, sreg2,

Register specifiers:
dreg – destination register ∈ reg32
sreg, sreg1, sreg2 – source registers ∈ reg32
reg32 =
{r0,r1,r2,r3,r4,r5,r6,r7,r8,r9,r10,r11,r12,r13,r14,r15,r16,
r17,r18,r19,r20,r21,r22,r23,r24,r25,r26,r27,r28,r29,r30,r31}

dr, sr, sr1, sr2 Register specifiers:
dr – destination register ∈ reg8
sreg, sreg1, sreg2 – source registers ∈ reg8
reg8 = {r24,r25,r26,r27,r28,r29,r30,r31}

imm, imm1,
imm2

Scalar or symbolic constant or an expression revealing a
constant. See Table 3-14 for allowed values

cp_sreg,
cp_dreg

coprocessor source and destination register specifiers
respectively
∈{r0,r1,r2,r3,r4,r5,r6,r7,r8,r9,r10,r11,r12,r13,r14,r15,r16,
r17,r18,r19,r20,r21,r22,r23,r24,r25,r26,r27,r28,r29,r30,r31}

Table 3-1. Abbreviations used in main instruction set

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 40/107

 Notes about instruction definitions

16-bit mode refers to instruction word length. Data is manipulated in
32-bit words except with 16-bit multiplication instructions.
If the syntax of an instruction is different in 16-bit mode than in 32-bit
mode then both syntaxes are presented: First the 32-bit version and
then 16-bit version. If both syntaxes are similar (or the particular
instruction is not defined in 16-bit mode) then only one is presented.
Optional parameters for conditional execution are enclosed in
brackets.
Conditional execution is not allowed in 16-bit mode.

3.1 Summary of Machine Instructions

Tables from Table 3-4 to Table 3-11 presents a summary of machine
instructions implemented in COFFEE™ core. The exact behaviour of
instructions is illustrated using RTN notation (Register Transfer
Notation), which is explained in Table 3-2.

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 41/107

Operator Description

8 Register transfer. Left hand side of the operator is target and right hand side is source.

[] Memory index. Selects one item or a range of items. Most often one word.

< > Bit index. Selects a bit or a range of bits.

n..m Index range from n to m. Either n downto m or n to m.

: Condition operator. If value on left hand side is true, action or value on right hand side is

yielded.

:= Substitution (of dummy variables).

Concatenation. Bits on right are appended to bits on left.

: Parallel separator. Used to list operations which are performed in parallel.

; Sequential separator. Used to list operations which are performed sequentially. Left hand

side performed first.

@ Repetition. Value on right hand side is repeated as many times as specified by value on

left hand side. Values are concatenated.

{ } Operation modifier. Refines preceding operation.

() Operation or value grouping. (evaluation order)

= ≠ < ≤ > ≥ Comparison. Evaluates to true (1) or false (0).

+ - × ÷ Arithmetic operators: addition, subtraction, multiplication, division.

∧ ∨ ¬ ⊕ A Logical operators: AND, OR, NOT, EXCLUSIVE OR, EQUIVALENCE.

<< >> Left shift and right shift operators respectively.

Table 3-2. RTN notations used in Summary Tables

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 42/107

mnemonic explanation

dr, sr, cr Destination register index, source register index and condition register index

respectively.

imm Immediate constant embedded in instruction word, zero-extended by hardware.

simm Immediate constant embedded in instruction word, sign-extended by hardware.

R Currently visible register bank, a set of 32 registers or coprocessor register bank.

M Ideal data memory which fills the 4GB address space, word addressed.

C Condition register bank, a set of eight three-bit wide registers.

carry Carry flag evaluated by compare instructions and some arithmetic instructions.

neg Negative flag evaluated by compare instructions and some arithmetic instructions.

zero Zero flag evaluated by compare instructions and some arithmetic instructions.

M64 Intermediate register, which contains a 64-bit product of previous 32-bit

multiplication.

HWS Hardware stack. Top of stack: HWS[0].

notes

Symbols which are not defined in this table are dummy variables (or defined earlier in this manual?).

If a bit field on right hand side of ‘8¶�RSHUDWRU�LV�VKRUWHU�WKDQ�WKH�GHVWLQDWLRQ�RQ�OHIW�KDQG�VLGH��WKH�
bit field is padded with zeros from left. The descending order of significance is from left to right

(MSB equals bit index 31). Bit indexes of condition flags are Z: 2, N: 1, C: 0.

Table 3-3. Notations used in Summary Tables

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 43/107

Mnemonic and
operands

Description Formal definition (RTN)

add dr, sr1, sr2 R[dr] 8�5>VU�@� + R[sr2]

C[0] 8��]HUR���QHJ���FDUU\

addi dr, sr, simm
add signed integers

R[dr] 8�5>VU@���VLPP

C[0] 8��]HUR���QHJ���FDUU\

addiu dr, sr, imm R[dr] 8�5>VU@���LPP

C[0] 8��]HUR���QHJ���FDUU\

addu dr, sr1, sr2
add unsigned integers

R[dr] 8�5>VU�@���5>VU�@

C[0] 8��]HUR���QHJ�� carry

mulhi dr evaluate upper 32 bits of previous

integer multiplication
R[dr] 8�0���������!

muli dr, sr, simm R[dr] 8�5>VU�@� ¯ simm

muls dr, sr1, sr2
multiply signed integers

R[dr] 8�5>VU�@� ¯ R[sr2]

mulu dr, sr1, sr2 multiply unsigned integers R[dr] 8�5>VU�@� ¯ R[sr2]

mulus dr, sr1, sr2 multiply unsigned integer with

signed integer
R[dr] 8�5>VU�@� ¯ R[sr2]

muls_16 dr, sr1, sr2 multiply signed integers

(16-bit operands)

R[dr] 8�
R[sr1]<15..0> ¯ R[sr2]<15..0>

mulu_16 dr, sr1, sr2 multiply unsigned integers

(16-bit operands)

R[dr] 8�
R[sr1]<15..0> ¯ R[sr2]<15..0>

mulus_16 dr, sr1, sr2 multiply unsigned integer with

signed integer (16-bit operands)

R[dr] 8�
R[sr1]<15..0> ¯ R[sr2]<15..0>

sub dr, sr1, sr2
subtract signed integers

R[dr] 8�5>VU�@� - R[sr2]

C[0] 8��]HUR���QHJ���FDUU\

subu dr, sr1, sr2
subtract unsigned integers

R[dr] 8�5>VU�@� - R[sr2]

C[0] 8��]HUR���QHJ���FDUU\

Table 3-4. Summary of integer arithmetic instructions

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 44/107

Mnemonic and
operands

Description Formal definition (RTN)

exb dr, sr, imm

extract byte from register

(imm = 0) :�5>GU@� 8�5>VU@�����!

(imm = 1) :�5>GU@� 8�5>VU@������!

(imm = 2) :�5>GU@� 8�5>VU@�������!

(imm = 3) :�5>GU@� 8�5>VU@�������!

exh dr, sr, imm
extract halfword from register

(imm = 0) :�5>GU@� 8�5>VU@������!

(imm = 1) :�5>GU@� 8�5>VU@�������!

exbf dr, sr1, sr2 L := R[sr2]<10..5>; P := R[sr2]<4..0>;

R[dr] 8�5>VU�@�3���/� - 1..P>

exbfi dr, sr, imm1, imm2

extract arbitrary bit field from

register L := imm1; P := imm2;

R[dr] 8�5>VU1]<P + L - 1..P>

lli dr, imm load lower part of register R[dr] 8���#����LPP

lui dr, imm load upper part of register R[dr]<31..16> 8�LPP

sext dr, sr1, sr2 P := R[sr2];

R[dr]<31..P> 8�5>VU�@�3!#���� – P):

R[dr]<P – 1..0> 8�5>V r1]<P – 1..0>

sexti dr, sr, imm
sign extend value in register

P := imm;

R[dr]<31..P> 8�5>VU@�3!#���� – P):

R[dr]<P – 1..0> 8�5>VU@�3� – 1..0>

conb dr, sr1, sr2
concatenate bytes

R[dr] 8�
0@16 # R[sr1]<7..0> # R[sr2]<7..0>

conh dr, sr1, sr2
concatenate halfwords

R[dr] 8� 5>VU�@������!� #

R[sr2]<15..0>

Table 3-5. Summary of byte and bit field manipulation instructions

Mnemonic and
operands

Description Formal definition (RTN)

and dr, sr1, sr2 R[dr] 8�5>VU�@� ∧ R[sr2]

andi dr, sr, imm
bitwise AND

R[dr] 8�5>VU@� ∧ imm

not dr, sr bitwise NOT R[dr] 8�¬R[sr]

or dr, sr1, sr2 R[dr] 8�5>VU�@� ∨ R[sr2]

ori dr, sr, imm
bitwise OR

R[dr] 8�5>VU@� ∨ imm

xor dr, sr1, sr2 bitwise XOR R[dr] 8�5>VU�@� ⊕ R[sr2]

Table 3-6. Summary of Boolean bitwise operation instructions

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 45/107

Mnemonic
and
operands

Description Formal definition(RTN)

bc cr, simm (C[cr]<0> = 1) :�3&� 8�3&����VLPP�����

begt cr, simm (C[cr]<2> = 1 ∨ C[cr]<1> = 0) :�3&� 8�3&����VLP m # 0)

belt cr, simm (C[cr]<2> = 1 ∨ C[cr]<1> = 1) :�3&� 8�3&����VLPP�����

beq cr, simm (C[cr]<2> = 1) :�3&� 8�3&����VLPP�����

bgt cr, simm (C[cr]<2> = 0 ∧ C[cr]<1> = 0) :�3&� 8�3&����VLPP�����

blt cr, simm (C[cr]<1> = 1) :�3&� 8�3&����VLPP�����

bnc cr, simm (C[cr]<0> = 0) :�3&� 8�3&����VLPP�����

bne cr, simm

branch on condition

(C[cr]<2> = 0) :�3&� 8�3&����VLPP�����

jal simm (PSR<3> = 1) :�,1&5(0(17�� ���

(PSR<3> = 0) :�,1&5(0(17�� ���

R[31] 8�3&���,1&5(0(17��3&� 8�3&����VLPP�����

jalr sr

jump and save return

address (PSR<3> = 1) :�,1&5(0(17�� ���

(PSR<3> = 0) :�,1&5(0(17�� ���

R[31] 8�3&���,1&5(0(17��3&� 8�5>VU@

jmp simm PC 8�3&����VLPP�����

jmpr sr
jump

PC 8�5>VU@

Table 3-7. Summary of jump instructions

Mnemonic and
operands

Description Formal definition (RTN)

cmp cr, sr1, sr2

Compare contents of registers.

When evaluating carry flag,

unsigned comparison is used.

(R[sr1] = R[sr2]) :�&>FU@��!� 8��

(R[sr1] ≠ R[sr2]) :�&>FU@��!� 8��

(R[sr1] < R[sr2]) :�&>FU@��!� 8��

(R[sr1] ≥ R[sr2]) :�&>FU@��!� 8��

(R[sr1] - R[sr2] ≥ 232) :�&>FU@��!� 8�
1

(R[sr1] - R[sr2] < 232) :�&>FU@��!� 8�
0

cmpi cr, sr, simm

Compare an immediate to

register operand. When

evaluating carry flag, unsigned

comparison is used.

(R[sr1] = simm) :�&>FU@��!� 8��

(R[sr1] ≠ simm) :�&>FU@��!� 8��

(R[sr1] < simm) :�&>FU@��!� 8��

(R[sr1] ≥ simm) :�&>FU@��!� 8��

(R[sr1] - simm ≥ 232) :�&>FU@��!� 8��

(R[sr1] - simm < 232) :�&>FU@��!� 8��

Table 3-8. Summary of integer comparision instructions

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 46/107

Mnemonic
and operands

Description Formal definition(RTN)

sll dr, sr1, sr2 P := R[sr2]<5..0>; R[dr] 8�5>VU�@���� - P..0> # 0@P;

C[0] 8��]HUR���QHJ���FDUU\

slli dr, sr, imm
Logical shift left.

P := imm; R[dr] 8�5>VU�@���� - P..0> # 0@P;

C[0] 8��zero # neg # carry

sra dr, sr1, sr2 P := R[sr2]<5..0>; R[dr] 8�5>VU�@���!#3���5>VU�@�����3!

srai dr, sr, imm
Arithmetic shift right.

P := imm; R[dr] 8�5>VU�@���!#3���5>VU�@�����3!

srl dr, sr1, sr2 P := R[sr2]<5..0>; R[dr] 8��#3���5 [sr1]<31..P>

srli dr, sr, imm
Logical shift right.

P := imm; R[dr] 8��#3���5>VU�@�����3!

Table 3-9. Summary of shift instructions

Mnemonic and
operands Description Formal definition(RTN)

ld dr, sr, simm Load word from memory. R[dr] 8�0>VU���VLPP@

st sr1, sr2, simm Store word to memory M[sr2 + simm] 8�5>VU�@

mov dr, sr Register to register move R[dr] 8�5>VU@

movfc imm, dr, sr Move data from coprocessor register.

dr – destination index at COFFEE core.

sr – source index at coprocessor.

R[dr] 8�5>VU@

movtc imm, dr, sr Move data to coprocessor register.

dr – destination index at coprocessor.

sr – source index at COFFEE core.

R[dr] 8�5>VU@

Table 3-10. Summary of load, store and data moving instructions

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 47/107

Mnemonic
and
operands

Description Formal definition(RTN)

chrs imm
Change visible register set.

PSR<1> 8�LPP��!

PSR<2> 8�LPP��!

di Disable interrupts. PSR<4> 8��

ei Enable interrupts. PSR<4> 8��

swm imm Switch instruction decoding

mode.

(imm = 16) :�365��!� 8����365��!� 8����365��!� 8��

(imm = 32) :�365��!� 8����365��!� 8����365��!� 8��

reti
Return from interrupt

service routine.

PC 8�+:6>�@������!�
PSR 8�+:6>�@�������!�
C[0] 8�+:6>�@�������!

retu
Return to user mode.

PC 8�5>��@

PSR 8 SPSR

scall

System call.

SPSR 8�365��365��!� 8����365��!� 8����365��!� 8�
1:

PSR<3> 8�����365��!� 8���
(SPSR<3> = 1) :�,1&5(0(17�� ���

(SPSR<3> = 0) :�,1&5(0(17�� ���

R[31] 8�3&���,1&5(0(17��3&� 8�&&%>��@

rcon sr Restore condition register

bank.

C 8�5>VU@��� ..0>

scon dr Save condition register

bank.

R[dr] 8��#����&>�@���&>�@���&>�@���&>�@

C[3] # C[2] # C[1] # C[0]

trap imm

Software exception.

CCB[21] 8��#����LPP�

CCB[22] 8�DGGUHVV�RI�WUDS�LQVWUXFWLRQ�

CCB[23] 8�365�
PSR<0> 8����365��!� 8����365��!� 8����365 <3> 8�
1: PSR<4> 8���
PC 8�&&%>��@

See chapter 4.7.2 for details.

nop No operation. -

Table 3-11. Summary of miscellaneous instructions

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 48/107

3.2 Integer Arithmetic Instructions

add
syntax: (cond, creg) add dreg, sreg1, sreg2
 add dr, sr
description: The contents of the source registers sregi are summed
together and the result is placed to the destination register dreg.
Exception is raised if the result exceeds 231-1 or falls below -231. In
16-bit mode the register dr is the second source and the destination.
notes: Operation is carried out using twos complement arithmetic.
flags: Z, N, C (creg0)

addi
syntax: (cond, creg) addi dreg, sreg1, imm
 addi dr, imm
description: The immediate constant is sign extended and summed
with the contents of the source register sreg1. The result is placed to
the destination register dreg. Exception is raised if the result exceeds
231-1 or falls below -231. In 16-bit mode the register dr is the first
source register and the destination.
notes: Operation is carried out using twos complement arithmetic. See
the permitted values for the immediate in the Table 3-14.
flags: Z, N, C (creg0)

addiu
syntax: (cond, creg) addiu dreg, sreg1, imm
 addiu dr, imm
description: The immediate constant is zero extended and summed
with the contents of the source register sreg1. The result is placed to
the destination register dreg. Overflow is ignored. In 16-bit mode the
register dr is the first source register and the destination.
flags: Z, N, C (creg0)
notes: The register operand can also be ‘negative’ even though the
instruction is supposed to be 'add with immediate, unsigned operands' .
The only difference to addi is that possible overflow condition is
ignored. In general addition procedure is exactly the same for both
kinds of operands (2C or unsigned) only the result is interpreted
differently (in this case by the programmer or compiler). Flags are set
as expected when using 2C arithmetic. See the permitted values for
the immediate in the Table 3-14.

addu
syntax: (cond, creg) addu dreg, sreg1, sreg2
 addu dr, sr
description: The contents of the source registers sregi are summed
together and the result is placed to the destination register dreg.

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 49/107

Overflow is ignored. In 16 bit mode the register dr is the second
source and the destination.
flags: C, N, Z (CREG 0)
notes: Addition wider than 32 bits can be carried out as follows: Add
the lower 32 bits with addu and add one to the upper 32 bits if carry
was set in condition register creg0 as a result of the first addition. The
register operands can also be ‘negative’ even though the instruction is
supposed to be 'add, unsigned operands' . The only difference to add is
that possible overflow condition is ignored. In general addition
procedure is exactly the same for both kinds of operands (2C or
unsigned) only the result is interpreted differently (in this case by the
programmer or compiler). Flags are set as expected when using 2C
arithmetic.

mulhi
syntax: (cond, creg) mulhi dreg
description: Returns the upper 32 bits of a 64-bit product based on
the previous instruction which has to be one of the instructions mulu,
muls, muli or mulus.
notes: See also mulu, muli, muls and mulus.

muli
syntax: (cond, creg) muli dreg, sreg1, imm
 muli dr, imm
description: Multiplies the contents of the source register sreg1 with
the sign extended immediate imm and places the result to the
destination register dreg. The operands are assumed to be signed
integers (2C). In 16-bit mode dr is the source and the destination
register.
notes: See mulhi for recovering the upper 32 bits of a product longer
than 32-bit. See the permitted values for the immediate in Table 3-14.

muls
syntax: (cond, creg) muls dreg, sreg1, sreg2
 muls dr, sr
description: Multiplies the contents of the source register sreg1 with
the source register sreg2 and places the lower 32 bits of the result to
the destination register dreg. The operands are assumed to be signed
integers (2C). In 16-bit mode dr is the second source register and the
destination.
notes: See mulhi for recovering the upper 32 bits of a product longer
than 32-bit.

muls_16
syntax: (cond, creg) muls_16 dreg, sreg1, sreg2
 muls_16 dr, sr
description: Multiplies the lower halfword of the source register
sreg1 with the lower halfword of the source register sreg2 and places

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 50/107

the result to the destination register dreg. The operands are assumed to
be signed integers (2C). In 16-bit mode dr is the second source
register and the destination.

mulu
syntax: (cond, creg) mulu dreg, sreg1, sreg2
 mulu dr, sr
description: Multiplies the contents of the source register sreg1 with
the source register sreg2 and places the lower 32 bits of the result to
the destination register dreg. The operands are assumed to be
unsigned integers). In 16-bit mode dr is the second source register and
the destination.
notes: See mulhi for recovering the upper 32 bits of a product longer
than 32-bit.

mulu_16
syntax: (cond, creg) mulu_16 dreg, sreg1, sreg2
 mulu_16 dr, sr
description: Multiplies the lower halfword of the source register
sreg1 with the lower halfword of the source register sreg2 and places
the result to the destination register dreg. The operands are assumed to
be unsigned integers. In 16-bit mode dr is the second source register
and the destination.

mulus
syntax: (cond, creg) mulus dreg, sreg1, sreg2
 mulus dr, sr
description: Multiplies the contents of the source register sreg1 with
the source register sreg2 and places the lower 32 bits of the result to
the destination register dreg. The operand in register sreg1 is assumed
to be an unsigned integer and the operand in register sreg2 is assumed
to be a signed integer. In 16-bit mode dr is the second source register
and the destination.
notes: See mulhi for recovering the upper 32 bits of a product longer
than 32-bit.

mulus_16
syntax: (cond, creg) mulus_16 dreg, sreg1, sreg2
 mulus_16 dr, sr
description: Multiplies the lower halfword of the source register
sreg1 with the lower halfword of the source register sreg2 and places
the result to the destination register dreg. The operand in register
sreg1 is assumed to be an unsigned integer and the operand in register
sreg2 is assumed to be a signed integer. In 16-bit mode dr is the
second source register and the destination.

sub
syntax: (cond, creg) sub dreg, sreg1, sreg2
 sub dr, sr

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 51/107

description: The contents of the source register sreg2 is subtracted
from the contents of the source register sreg1 and the result is placed
to the destination register dreg. Exception is raised if the result
exceeds 231-1 or falls below -231. In 16-bit mode dr is the second
source register and the destination.
notes: Operation is carried out using twos complement arithmetic
flags: Z, C, N

subu
syntax: (cond, creg) subu dreg, sreg1, sreg2
 subu dr, sr
description: The contents of the source register sreg2 is subtracted
from the contents of the source register sreg1 and the result is placed
to the destination register dreg. In 16-bit mode dr is the second source
register and the destination.
flags: Z, C, N
notes: Over/underflow is ignored.

3.3 Byte and Bit Field Manipulation Instructions

conb
syntax: (cond, creg) conb dreg, sreg1, sreg2
 conb dr, sr
description: Concatenates the least significant bytes from the source
registers to form a halfword. The least significant byte from the
register sreg1 becomes the most significant byte of the halfword and
the least significant byte from the register sreg2 becomes the least
significant byte of the halfword. The resulting halfword is saved to the
destination register dreg. The upper halfword of the result is filled
with zeros. In 16-bit mode dr corresponds to the second source
register sreg2 (and the destination) and sr corresponds to sreg1.
notes: Note that ordering of operands is different in 16-bit mode from
that of 32-bit mode.

conh
syntax: (cond, creg) conh dreg, sreg2, sreg1
 conh dr, sr
description: Concatenates the least significant halfwords from the
source registers to form a word. The least significant halfword from
the register sreg2 becomes the most significant halfword of the word
and the least significant halfword from the register sreg1 becomes the
least significant halfword of the word. The resulting word is saved to
the destination register dreg. In 16-bit mode dr corresponds to the
second source register sreg2 (and the destination) and sr corresponds
to sreg1.
notes: Note that ordering of operands is different in 16-bit mode from
that of 32-bit mode.

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 52/107

exb
syntax: (cond, creg) exb dreg, sreg, imm
description: Extracts the byte specified by the immediate imm from
the source register sreg/sr and places it to the least significant end of
the destination register dreg/dr. The upper three bytes in the
destination register are cleared. The extracted byte is specified
according to the Table 3-12.

Contents of a source register
high end low byte

byte3 byte2 byte1 byte0

0 byte0
1 byte1
2 byte2
3 byte3

Table 3-12. Extracted byte specification

notes: See the permitted values for the immediate in Table 3-14.

exbf
syntax: (cond, creg) exbf dreg, sreg1, sreg2
 exbf dr, sr
description: Operates like exbfi, but the two immediates defining the
extracted field are combined and read from the least significant end of
the source register sreg2: bits 10 down to 5 define the length of the
field and bits 4 down to 0 define the LSB position. In the 16-bit mode
dr is the second source and the destination.
notes: Example
Suppose that the bitfield shown bellow should be extracted from
register R0 shown in Figure 3-1 (could be for example a sub address
field in a message frame).

Figure 3-1. Content of R0

Now the length of the bitfield is 5 = 000101 and LSB position is 6 =
00110. To extract the bitfield we have to place a constant 000101
00110 = 000 1010 0110 = 0A6h in second source register (say R2).
The following code could be used to place the result in R3:

lli R2, 0a6h
exbf R3, R0, R2

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 53/107

If we assume that the length of the bitfield in question is contained in
register R1 and the LSB position is in register R2. The following code
could be used to extract the bitfield to R3:

// shift the length to bits 10 downto 5
slli R1, R1, 5
or R2, R2, R1 // combine length and position
exbf R3, R0, R2

See also exbfi.

exbfi
syntax: exbfi dreg, sreg1, imm1, imm2
description: Extracts a bitfield of arbitrary length and position from
the source register sreg1 and places it to the low end of the destination
register dreg. Bitfield length and position are defined by the
immediates imm1 and imm2 as follows: imm1 defines the length of the
bitfield. Immediate imm2 specifies the LSB position of the extracted
bitfield in the source register. If the extracted bitfield is shorter than
32 bits, the extra bit positions in the destination register are filled with
zeros.
notes: Can be used only in 32-bit mode. This instruction cannot be
executed conditionally. See the permitted values for the immediate in
Table 3-14.

exh
syntax: (cond, creg) exh dreg, sreg1, imm
description: Extracts the halfword specified by the immediate imm
from the source register sreg1/sr and places it to the least significant
end of the destination register dreg/dr. The upper halfword in the
destination register is cleared. If imm = 0, then the least significant
halfword is extracted, otherwise the most significant halfword is
extracted.

lli
syntax: lli dreg, imm
description: Loads the lower halfword of the destination register dreg
with the immediate imm. The upper half of the destination register is
cleared.
notes: Can be used only in 32-bit mode. This instruction cannot be
executed conditionally. See the permitted values for the immediate in
Table 3-14.

lui
syntax: lui dreg, imm
description: Loads the upper halfword of the destination register dreg
with the immediate imm. The lower half of the destination register is
preserved.

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 54/107

notes: Can be used only in 32-bit mode. This instruction cannot be
executed conditionally. See the permitted values for the immediate in
Table 3-14.

sext
syntax: (cond, creg) sext dreg, sreg1, sreg2
 sext dr, sr
description: Works as sexti, but the position of the sign bit is
evaluated using the five least significant bits from the source register
sreg2. In 16-bit mode dr is the second source register and the
destination.
notes: See also sexti.

sexti
syntax: (cond, creg) sexti dreg, sreg, imm
 sexti dr, imm
description: Sign extends the operand in the source register sreg and
places the result to the destination register dreg. The position of the
sign bit is specified by the immediate imm (0 corresponds to LSB and
31 corresponds to MSB). In 16-bit mode dr is the source register and
the destination.
notes: See the permitted values for the immediate in Table 3-14.

3.4 Boolean Bitwise Operation Instructions

and
syntax: (cond, creg) and dreg, sreg1, sreg2
 and dr, sr
description: Bitwise Boolean AND operation is performed to the
contents of the source registers sregi. The result is placed to the
destination register dreg.In 16-bit mode the register dr is the second
source and the destination.

andi
syntax: (cond, creg) andi dreg, sreg1, imm
 andi dr, imm
description: The immediate constant is zero extended. Bitwise
Boolean AND operation is performed to the extended immediate and
the contents of the source register sreg1. The result is placed to the
destination register dreg. In 16 bit mode the register dr is the register
source and the destination.
notes: See the permitted values for the immediate in Table 3-14.

not
syntax: (cond, creg) not dreg, sreg1
description: Performs a bitwise Boolean NOT operation to the
contents of the source register sreg1/sr and places the result to the
destination register dreg/dr.

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 55/107

or
syntax: (cond, creg) or dreg, sreg1, sreg2
 or dr, sr
description: Performs a bitwise Boolean OR operation to the contents
of the source registers sregi and places the result to the destination
register dreg. In 16-bit mode dr is the second source and the
destination register.

ori
syntax: (cond, creg) ori dreg, sreg1, imm
 ori dr, imm
description: Performs a bitwise Boolean OR operation to the contents
of the source register sreg1 and zero extended immediate imm. The
result is placed to the destination register dreg. In 16-bit mode dr is
the source and the destination register.
notes: See the permitted values for the immediate in Table 3-14.

xor
syntax: (cond, creg) xor dreg, sreg1, sreg2
 xor dr, sr
description: Performs a bitwise XOR operation to the contents of the
source registers sreg1 and sreg2. The result is placed to the destination
register dreg. In 16-bit mode the bitwise XOR is performed to the
contents of dr and sr and the result is placed into dr.

3.5 Branch (Conditional Jump) Instructions

bc
syntax: bc creg, imm
 bc imm
description: If the carry flag in the condition register creg is high,
program execution branches to target address specified by the
immediate imm. The target address is calculated as follows: The
immediate offset imm is shifted left by one bit and sign extended. The
sign extended offset is added to the contents of the program counter
PC. In 16-bit mode the condition register used is allways creg0.
notes: This instruction cannot be executed conditionally. The
instruction following this instruction is always executed (branch slot).
The branch offset is calculated relative to the instruction in the slot.
See the permitted values for the immediate in Table 3-14.

begt
syntax: begt creg, imm
 begt imm
description: If the flags in the condition register creg indicate that the
condition eqt (equal or greater than) is true, program execution
branches to target address specified by the immediate imm. The target

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 56/107

address is calculated as follows: The immediate offset imm is shifted
left by one bit and sign extended. The sign extended offset is added to
the contents of the program counter PC. In 16-bit mode the condition
register used is always creg0.
notes: This instruction cannot be executed conditionally. The
instruction following this instruction is always executed (branch slot).
The branch offset is calculated relative to the instruction in the slot.
See the permitted values for the immediate in Table 3-14.

belt
syntax: belt creg, imm
 belt imm
description: If the flags in the condition register creg indicate that the
condition elt (equal or less than) is true, program execution branches
to target address specified by the immediate imm. The target address is
calculated as follows: The immediate offset imm is shifted left by one
bit and sign extended. The sign extended offset is added to the
contents of the program counter PC. In 16-bit mode the condition
register used is always creg0
notes: This instruction cannot be executed conditionally. The
instruction following this instruction is always executed (branch slot).
The branch offset is calculated relative to the instruction in the slot.
See the permitted values for the immediate in Table 3-14.

beq
syntax: beq creg, imm
 beq imm
description: If the flags in the condition register creg indicate that the
condition eq (equal) is true, program execution branches to target
address specified by the immediate imm. The target address is
calculated as follows: The immediate offset imm is shifted left by one
bit and sign extended. The sign extended offset is added to the
contents of the program counter PC. In 16-bit mode the condition
register used is always creg0.
notes: This instruction cannot be executed conditionally. The
instruction following this instruction is always executed (branch slot).
The branch offset is calculated relative to the instruction in the slot.
See the permitted values for the immediate in Table 3-14.

bgt
syntax: bgt creg, imm
 bgt imm
description: If the flags in the condition register creg indicate that the
condition gt (greater than) is true, program execution branches to
target address specified by the immediate imm. The target address is
calculated as follows: The immediate offset imm is shifted left by one
bit and sign extended. The sign extended offset is added to the

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 57/107

contents of the program counter PC. In 16-bit mode the condition
register used is always creg0.
notes: This instruction cannot be executed conditionally. The
instruction following this instruction is always executed (branch slot).
The branch offset is calculated relative to the instruction in the slot.
See the permitted values for the immediate in Table 3-14.

blt
syntax: blt creg, imm
 blt imm
description: If the flags in the condition register creg indicate that the
condition lt (less than) is true, program execution branches to target
address specified by the immediate imm. The target address is
calculated as follows: The immediate offset imm is shifted left by one
bit and sign extended. The sign extended offset is added to the
contents of the program counter PC. In 16-bit mode the condition
register used is always creg0.
notes: This instruction cannot be executed conditionally. The
instruction following this instruction is always executed (branch slot).
The branch offset is calculated relative to the instruction in the slot.
See the permitted values for the immediate in Table 3-14.

bne
syntax: bne creg, imm
 bne imm
description: If the flags in the condition register creg indicate that the
condition ne (not equal) is true, program execution branches to target
address specified by the immediate imm. The target address is
calculated as follows: The immediate offset imm is shifted left by one
bit and sign extended. The sign extended offset is added to the
contents of the program counter PC. In 16-bit mode the condition
register used is always creg0.
notes: This instruction cannot be executed conditionally. The
instruction following this instruction is always executed (branch slot).
The branch offset is calculated relative to the instruction in the slot.
See the permitted values for the immediate in Table 3-14.

bnc
syntax: bnc creg, imm
 bnc imm
description: If the carry flag in the condition register creg is low,
program execution branches to target address specified by the
immediate imm. The target address is calculated as follows: The
immediate offset imm is shifted left by one bit and sign extended. The
sign extended offset is added to the contents of the program counter
PC. In 16-bit mode the condition register used is always creg0.
notes: This instruction cannot be executed conditionally. The
instruction following this instruction is always executed (branch slot).

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 58/107

The branch offset is calculated relative to the instruction in the slot.
See the permitted values for the immediate in Table 3-14.

3.6 Jump Instructions

jal
syntax: jal imm
description: Program execution branches to target address specified
by the immediate imm. The target address is calculated as follows:
The immediate offset imm is shifted left by one bit and sign extended.
The sign extended offset is added to the contents of the program
counter PC. Link address is saved to register R31/SR31. The link
address is the address of the next instruction after branch slot
instruction.
notes: This instruction cannot be executed conditionally. The
instruction following this instruction is always executed (branch slot).
The jump offset is calculated relative to the instruction in the slot. See
the permitted values for the immediate in Table 3-14.

jalr
syntax: (cond, creg) jalr sreg1
description: Program execution branches to target address specified
by the contents of the source register sreg1/sr. Link address is saved
to register R31/SR31. The link address is the address of the next
instruction after branch slot instruction.
notes: The instruction following this instruction is always executed
(branch slot). Conditional jumps (branches) that can reach the whole
address space can be synthesized by executing this instruction
conditionally. Note that the address in the source register should be
aligned to word boundary if in 32-bit mode or halfword boundary if in
16-bit mode.

jmp
syntax: jmp imm
description: Program execution branches to target address specified
by the immediate imm. The target address is calculated as follows:
The immediate offset imm is shifted left by one bit and sign extended.
The sign extended offset is added to the contents of the program
counter PC.
notes: This instruction cannot be executed conditionally. The
instruction following this instruction is always executed (branch slot).
The jump offset is calculated relative to the instruction in the slot. See
the permitted values for the immediate in Table 3-14.

jmpr
syntax: (cond, creg) jmpr sreg1

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 59/107

description: Program execution branches to target address specified
by the contents of the source register sreg1/sr.
notes: The instruction following this instruction is always executed
(branch slot). Conditional jumps (branches) that can reach the whole
address space can be synthesized by executing this instruction
conditionally. Note that the address in the source register should be
aligned to word boundary if in 32-bit mode or halfword boundary if in
16-bit mode.

3.7 Integer Comparison Instructions

cmp
syntax: cmp creg, sreg1, sreg2
 cmp sr1, sr2
description: The contents of the source registers sregi/sri are
compared as if they were signed numbers. The operation is logically
done by subtracting the contents of sreg2/sr2 from the contents of
sreg1/sr1. Flags N, Z and C are set or cleared accordingly and saved
to the condition register creg. In 16-bit mode the condition register is
always creg0.
flags: N, Z, C
notes: The logical subtraction sreg1- sreg2/sr1 - sr2 does not
overflow, that is, the flags are always set correctly independently of
the result of the subtraction. This instruction cannot be executed
conditionally.

cmpi
syntax: cmpi creg, sreg1, imm
 cmpi sr, imm
description: The immediate constant imm is sign extended and
compared to the contents of the source register sreg1/sr1 as if they
were signed numbers. The operation is logically done by subtracting
the immediate imm from the contents of sreg1/sr1. Flags N, Z and C
are set or cleared accordingly and saved to the condition register creg.
In 16 bit mode the condition register is always creg0.
flags: N, Z, C
notes: The logical subtraction sreg1- imm/sr - imm does not overflow,
that is, the flags are always set correctly independently of the result of
the subtraction. This instruction cannot be executed conditionally. See
the permitted values for the immediate in Table 3-14.

3.8 Shift Instructions

sll
syntax: (cond, creg) sll dreg, sreg1, sreg2
 sll dr sr

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 60/107

description: Performs the logical shift left to the contents of the
source register sreg1/sr and places the result to the destination register
dreg/dr. The six least significant bits in the source register sreg2
specify the amount of shift. The last ‘dropped’ bit (bit 32) is saved as
carry flag in register creg0. In 16-bit mode dr is the second source
register and the destination.
flags: C, N, Z
notes: If the unsigned integer formed by the six least significant bits
in the source register sreg2 imply a shift of more than 32 positions
then the result will be a shift of 32 positions (which is zero).

slli
syntax: (cond, creg) slli dreg, sreg1, imm
 slli dr, imm
description: Performs the logical shift left to the contents of the
source register sreg1 and places the result to the destination register
dreg. The immediate imm specifies the amount of shift. The last
‘dropped’ bit (bit 32) is saved as carry flag in register creg0. In 16-bit
mode dr is the source register and the destination.
notes: See the permitted values for the immediate in Table 3-14.
flags: C, N, Z

sra
syntax: (cond, creg) sra dreg, sreg1, sreg2
 sra dr sr
description: Performs the arithmetic shift right to the contents of the
source register sreg1/sr and places the result to the destination register
dreg/dr. The six least significant bits in the source register sreg2
specify the amount of shift. In 16-bit mode dr is the second source
register and the destination.
notes: If the unsigned integer formed by the six least significant bits
in the source register sreg2 imply a shift of more than 32 positions
then the result will be a shift of 32 positions.

srai
syntax: (cond, creg) srai dreg, sreg1, imm
 srai dr, imm
description: Performs the arithmetic shift right to the contents of the
source register sreg1 and places the result to the destination register
dreg. The immediate imm specifies the amount of shift. In 16-bit
mode dr is the source register and the destination.
notes: See the permitted values for the immediate in Table 3-14.

srl
syntax: (cond, creg) srl dreg, sreg1, sreg2
 srl dr sr
description: Performs the logical shift right to the contents of the
source register sreg1/sr and places the result to the destination register

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 61/107

dreg/dr. The six least significant bits in the source register sreg2
specify the amount of shift. In 16-bit mode dr is the second source
register and the destination.
notes: If the unsigned integer formed by the six least significant bits
in the source register sreg2 imply a shift of more than 32 positions
then the result will be a shift of 32 positions.

srli
syntax: (cond, creg) srli dreg, sreg1, imm
 srli dr, imm
description: Performs the logical shift right to the contents of the
source register sreg1 and places the result to the destination register
dreg. The immediate imm specifies the amount of shift. In 16-bit
mode dr is the source register and the destination.
notes: See the permitted values for the immediate in Table 3-14.

3.9 Memory Load and Store, Data Moving Instructions

ld
syntax: (cond, creg) ld dreg, sreg1, imm
description: Loads a 32-bit data word from memory to the destination
register dreg/dr. The address of the data is calculated as follows: The
immediate offset imm is sign extended and added to the contents of
the source register sreg1/sr. The address is not auto-aligned (two least
significant bits of the resulting address are driven to address bus).
notes: The result of the address calculation doesn’t have to be aligned
to word boundary. The two least significant bits can be used for
example as byte index if narrower bus is used. Also the smallest
addressable unit can be 32-bit word giving 16GB address range! See
the permitted values for the immediate in Table 3-14.

mov
syntax: (cond, creg) mov dreg, sreg1
description: Copies the contents of the source register sreg1/sr to the
destination register dreg/dr.

st
syntax: (cond, creg) st sreg2, sreg1, imm
description: Stores the data in the source register sreg2/sr2 to
memory location whose address is calculated as follows: The
immediate offset imm is sign extended and added to the contents of
the source register sreg1/sr1. The address is not auto-aligned (two
least significant bits of the resulting address are driven to address bus).
notes: The two least significant bits can be used for example as byte
index if narrower bus is used. Also the smallest addressable unit can
be 32-bit word giving 16GB address range! See the permitted values
for the immediate in Table 3-14.

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 62/107

3.10 Coprocessor instructions

movfc
syntax: (cond, creg) movfc imm, dreg, cp_sreg
description: Copies the contents of one of the registers in the
coprocessor number imm to the destination register dreg/dr. The
immediate imm is used to specify one of the four possible
coprocessors: 0, 1, 2 or 3. Cp_reg is an index to the coprocessor
register file.

movtc
syntax: (cond, creg) movtc imm, cp_dreg, sreg1
description: Copies the contents of the source register sreg1/sr to the
coprocessor register cp_dreg. The immediate imm is used to specify
one of the four possible coprocessors: 0, 1, 2 or 3.

3.11 Miscellaneous Instructions

chrs
syntax: chrs imm
description: Specifies which register set is used for reading or
writing. The source register(s) and the destination register don’t have
to reside in the same set. The register sets to be used are specified by
the immediate imm according to the Table 3-13.

imm Write Read
0 (00b) Set1 (user set) Set1 (user set)
1 (01b) Set1 (user set) Set 2 (superuser set)
2 (10b) Set 2 (superuser set) Set1 (user set)
3 (11b) Set 2 (superuser set) Set 2 (superuser set)

Table 3-13. Register set definition for writing and reading

notes: When execution in the super user mode begins the default
register set for reading and writing is the super user set (set 2). When
returning back to the user mode the default register set is the user set
(set 1). This command is allowed only in super user mode. An
exception is raised on an attempt to use this command in user mode.
As a result, the user cannot see the register set intended only for super
user. Not allowed to be executed conditionally.

di
syntax: di
description: Disables maskable interrupts.
notes: Not permitted to be executed conditionally. An exception is
raised on an attempt to use this command in user mode. See Section

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 63/107

1.4 and Section 1.5 about exceptions and interrupts for definitions and
details.

ei
syntax: ei
description: Enables maskable interrupts.
notes: Not permitted to be executed conditionally. An exception is
raised on an attempt to use this command in user mode. See Section
1.4 and Section 1.5 about exceptions and interrupts for definitions and
details.

reti
syntax: reti
description: Used for returning from an interrupt service routine.
Loads PC, CR0 and PSR from the hardware stack and signals to the
external (and internal) interrupt handler that the servicing of the last
interrupt request was completed.
notes: Not allowed to be executed conditionally. Reti instruction has
to be followed by two nops!

retu
syntax: retu
description: Used for returning or moving from system
code/superuser mode to user mode. Execution of user code starts from
a address in register PR31. Status flags are copied from the register
SPSR. (They should be set appropriately before issuing retu).
Available only in superuser mode.

scall
syntax: (cond, creg) scall
description: System call transfers the processor to the superuser mode
and execution of instructions begins at address defined in register
SYSTEM_ADDR. The link address is saved in to the register PR31
(link register of SET2). The link address is the address of the
instruction following nop (see notes below). The state of the processor
before scall is copied to the register SPSR.
notes: When transferring the control to superuser code the default
settings are 32-bit mode, interrupts disabled and superuser register set
(both read and write). As with branches and jumps also this instruction
has a branch slot, which in this case has to be filled with a nop
instruction. See retu.

swm
syntax: swm imm
description: Changes the instruction decoding mode. The value of the
immediate imm specifies the mode: imm = 16 => switch to 16-bit

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 64/107

mode, imm = 32=> switch to 32-bit mode. Other values are reserved
for future extensions.
flags: IL
notes: This instruction is not allowed to be executed conditionally.
See the permitted values for the immediate in Table 3-14. This
instruction has to be followed by two nop instructions!

nop
syntax: nop
description: Idle command that does not alter the state of the
processor.
notes: See the list of instructions which require a succeeding nop.
This instruction cannot be executed conditionally (even if it could it
wouldn’t have any effect anyway).

rcon
syntax: rcon sreg1
description: Restores the contents of all the condition registers from
the source register sreg1.
notes: This instruction is not allowed to be executed conditionally.

scon
syntax: scon dreg
description: Saves the contents of all the condition registers to the
(low end of) destination register dreg.
notes: This instruction is not allowed to be executed conditionally.

trap
syntax: trap imm
description: Generates a software trap. Execution is started at the
address of exception handler routine defined in the CCB register
EXCEP_ADDR. The address of the trap instruction is saved in the
EPC register and the exception code in exception cause register
(ECS).
notes: See Section 1.4 to get more information about exceptions and
about the code.

3.12 Pseudo Instructions

dec
syntax: dec dr
description: Word decrement.
pseudo code:
32-bit mode:

addiu dr, dr, -1

16-bit mode:

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 65/107

addiu dr, -1

decb
syntax: decb dr
description: Byte decrement = modulo 256 decrement.
pseudo code:
32-bit mode:

addiu dr, dr, -1
andi dr, dr, 0xff

16-bit mode:

addiu dr, -1
slli dr, 24
srli dr, 24

inc
syntax: inc dr
descrption: Word increment.
pseudo code:
32-bit mode:

addiu dr, dr, 1

16-bit mode:

addiu dr, 1

incb
syntax: incb dr
description: Byte increment = modulo 256 increment.
pseudo code:
32-bit mode:

addiu dr, dr, 1
andi dr, dr, 0xff

16-bit mode:

addiu dr, 1
slli dr, 24
srli dr, 24

ldra
syntax: ldra dr, limm
description: Load register with address.
pseudo code:
32-bit mode:

lli dr, imm & 0xffff
lui dr, imm >> 16

16-bit mode

xor dr, dr
 ori dr, imm >> 25
 slli dr, 7
 ori dr, (imm >> 18) & 0x7f

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 66/107

 slli dr, 7
 ori dr, (imm >> 11) & 0x7f
 slli dr, 7
 ori dr, (imm >> 4) & 0x7f
 slli dr, 4

ori dr, imm & 0xf

ldri
syntax: ldri dr, limm
description: Load register with long immediate or constant.
pseudo code:
32-bit mode:

lli dr, imm & 0xffff

if(imm > 65535)
lui dr, imm >> 16

16-bit mode:

 if(limm == 0)
xor dr, dr

 else
 {
 if(imm[31:25] != 0)
 {
 ori dr, imm >> 25
 slli dr, 7
 }
 if(imm[31:18] != 0)
 {
 ori dr, (imm >> 18) & 0x7f
 slli dr, 7
 }
 if(imm[31:11] != 0)
 {
 ori dr, (imm >> 11) & 0x7f
 slli dr, 7
 }
 if(imm[31:4] != 0)
 {
 ori dr, (imm >> 4) & 0x7f
 slli dr, 4

}
ori dr, imm & 0xf

 }

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 67/107

Permitted values for imm

32 bit

instruction 16 bit
conditional unconditional

notes

addi -26 ... 26-1 -28 ... 28-1 -214 ... 214-1
addiu 0 ... 27-1 0 ... 29-1 0 ... 215-1
andi 0 ... 27-1 0 ... 29-1 0 ... 215-1
bxx 1 -29 ... 29-1 - -221 ... 221-1 Should be even in

32bit mode
chrs 0...3 - 0..3
cmpi -26 ... 26-1 - -216 ... 216-1
exb 0...3 0..3 0...3

exbfi 3 - - imm1: 0...32
imm2: 0...31

Only 32 bit mode

exh 0 or 1 0 or 1 0 or 1
jal -29 ... 29-1 - -224 ... 224-1 Should be even in

32bit mode
jmp -29 ... 29-1 - -224 ... 224-1 Should be even in

32bit mode
ld -8...7 -28 ... 28-1 -214 ... 214-1
lli - - 0 ... 216-1

(or
-215... 215-1)

Only 32 bit mode

lui - - 0 ... 216-1
(or

-215... 215-1)

Only 32 bit mode

movfc 0...3 0..3 0..3
movtc 0...3 0..3 0..3
muli -26 ... 26-1 -28 ... 28-1 -214 ... 214-1
ori 0 ... 27-1 0 ... 29-1 0 ... 215-1

sexti 0...31 0...31 0...31
slli 0...32 0...32 0...32
srai 0...32 0...32 0...32
srli 0...32 0...32 0...32
st -8...7 -28 ... 28-1 -214 ... 214-1

swm2 16 or 32 - 16 or 32
trap - - 0...31

Table 3-14. Permitted values for immediate constant

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 68/107

machine instructions assembly

instruction/variant 16 bit output 32 bit output
add dr, sr1, sr2 if (sr2 != dr)

 mov dr, sr2
add dr, sr1

add dr, sr1, sr2

add dr, sr add dr, sr add dr, sr, dr
addi dr, sr1, imm if (sr1 != dr)

 mov dr, sr1
addi dr, imm

addi dr, sr1, imm

addi dr, imm addi dr, imm addi dr, dr, imm
addiu dr, sr1, imm if (sr1 != dr)

 mov dr, sr1
addiu dr, imm

addiu dr, sr1, imm

addiu dr, imm addiu dr, imm addiu dr, dr, imm
addu dr, sr1, sr2 if (sr2 != dr)

 mov dr, sr2
addu dr, sr1

addu dr, sr1, sr2

addu dr, sr addu dr, sr addu dr, sr, dr
and dr, sr1, sr2 if (sr2 != dr)

 mov dr, sr2
and dr, sr1

and dr, sr1, sr2

and dr, sr and dr, sr and dr, sr, dr
andi dr, sr1, imm if (sr1 != dr)

 mov dr, sr1
andi dr, imm

andi dr, sr1, imm

andi dr, imm andi dr, imm andi dr, dr, imm
bc cr, imm if (cr == c0)

 bc imm
else
 error

bc cr, imm

bc imm bc imm bc c0, imm
begt cr, imm if (cr == c0)

 begt imm
else
 error

begt cr, imm

begt imm begt imm begt c0, imm
belt cr, imm if (cr == c0)

 belt imm
else
 error

belt cr, imm

belt imm belt imm belt c0, imm
beq cr, imm if (cr == c0)

 beq imm
else
 error

beq cr, imm

beq imm beq imm beq c0, imm

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 69/107

bgt cr, imm if (cr == c0)
 bgt imm
else
 error

bgt cr, imm

bgt imm bgt imm bgt c0, imm
blt cr, imm if (cr == c0)

 blt imm
else
 error

blt cr, imm

blt imm blt imm blt c0, imm
bnc cr, imm if (cr == c0)

 bnc imm
else
 error

bnc cr, imm

bnc imm bnc imm bnc c0, imm
bne cr, imm if (cr == c0)

 bne imm
else
 error

bne cr, imm

bne imm bne imm bne c0, imm
chrs imm chrs imm chrs imm
cmp cr, sr1, sr2 if (cr == c0)

 cmp sr1, sr2
else
 error

cmp cr, sr1, sr2

cmp sr1, sr2 cmp sr1, sr2 cmp c0, sr1, sr2
cmpi cr, sr1, imm if (cr == c0)

 cmpi sr1, imm
else
 error

cmpi cr, sr1, imm

cmpi sr, imm cmpi sr, imm cmpi c0, sr, imm
conb dr, sr1, sr2 if (sr2 != dr)

 mov dr, sr2
conb dr, sr1

conb dr, sr1, sr2

conb dr, sr conb dr, sr
conh dr, sr
slli dr, 8
srli dr, 16

conb dr, dr, sr

conh dr, sr2, sr1 if (sr2 != dr)
 mov dr, sr2
conh dr, sr1

conh dr, sr2, sr1

conh dr, sr conh dr, sr conh dr, dr, sr
decb dr addi dr, -1

slli dr, 24
srli dr, 24

addi dr, dr, -1
andi dr, dr, 0xff

dec dr addi dr, -1 addi dr, dr -1
di di di

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 70/107

ei ei ei
exb dr, sr, imm exb dr, sr, imm exb dr, sr, imm
exb dr, imm exb dr, dr, imm exb dr, dr, imm
exbf dr, sr1, sr2 if (sr2 != dr)

 mov dr, sr2
exbf dr, sr1

exbf dr, sr1, sr2

exbf dr, sr exbf dr, sr exbf dr, sr, dr
exbfi dr, sr1, imm1, imm2 if (sr1 != dr)

 mov dr, sr1
slli dr, (32 – (imm1 + imm2))
srli dr, (32 – imm1)

exbfi dr, sr1, imm1,
imm2

exbfi dr, imm1, imm2 slli dr, (32 – (imm1 + imm2))
srli dr, (32 – imm1)

exbfi dr, dr, imm1,
imm2

exh dr, sr, imm exh dr, sr, imm exh dr, sr, imm
exh dr, imm exh dr, dr, imm exh dr, dr, imm
incb dr addiu dr, 1

slli dr, 24
srli dr, 24

addiu dr, dr, 1
andi dr, dr, 0xff

inc dr addiu dr, 1 addiu dr, dr 1
jal imm jal imm jal imm
jalr sr jalr sr jalr sr
jmp imm jmp imm jmp imm
jmpr sr jmpr sr jmpr sr
ld dr, sr, imm ld dr, sr, imm ld dr, sr, imm
ld dr, sr ld dr, sr, 0 ld dr, sr, 0
ldri dr, limm

xor dr, dr
if (limm[31:25] != 0){
 ori dr, limm >> 25
 slli dr, 7
}
if (limm[31:18] != 0){
 ori dr, (limm >> 18) &
0x7f
 slli dr, 7
}
if (limm[31:11] != 0){
 ori dr, (limm >> 11) &
0x7f
 slli dr, 7
}
if (limm[31:4] != 0){
 ori dr, (limm >> 4) & 0x7f
 slli dr, 4
}
if (limm[3:0] != 0){
 ori dr, limm & 0xf
}

lli dr, limm & 0xffff
if (limm > 65535)
 lui dr, limm >> 16

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 71/107

ldra dr, limm xor dr, dr
ori dr, limm >> 25
slli dr, 7
ori dr, (limm >> 18) & 0x7f
slli dr, 7
ori dr, (limm >> 11) & 0x7f
slli dr, 7
ori dr, (limm >> 4) & 0x7f
slli dr, 4
ori dr, limm & 0xf

lli dr, limm & 0xffff
lui dr, limm >> 16

ldra dr, limm + imm xor dr, dr
ori dr, limm >> 25
slli dr, 7
ori dr, (limm >> 18) & 0x7f
slli dr, 7
ori dr, (limm >> 11) & 0x7f
slli dr, 7
ori dr, (limm >> 4) & 0x7f
slli dr, 4
ori dr, limm & 0xf
addi dr, imm

lli dr, limm & 0xffff
lui dr, limm >> 16
addi dr, imm

lli dr, imm xor dr, dr
ori dr, (imm >> 9)
slli dr, 7
ori dr, ((imm >> 2) & 0x7f)
slli dr, 2
ori dr, (imm & 0x3)

lli dr, imm

lui dr, imm swm 32
nop
nop
.align 2
.code32
lui dr, imm
swm 16
nop
nop
.code16

lui dr, imm

mov dr, sr1 mov dr, sr1 mov dr, sr1
movfc imm, dr, cpr movfc imm, dr, cpr movfc imm, dr, cpr
movtc imm, cpr, sr1 movtc imm, cpr, sr1 movtc imm, cpr, sr1
mulhi dr mulhi dr mulhi dr
muli dr, sr1, imm if (sr1 != dr)

 mov dr, sr1
muli dr, imm

muli dr, sr1, imm

muli dr, imm muli dr, imm muli dr, dr, imm

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 72/107

muls dr, sr1, sr2 if (sr2 != dr)

 mov dr, sr2
muls dr, sr1

muls dr, sr1, sr2

muls dr, sr muls dr, sr muls dr, sr, dr
muls_16 dr, sr1, sr2 if (sr2 != dr)

 mov dr, sr2
muls_16 dr, sr1

muls_16 dr, sr1, sr2

muls_16 dr, sr muls_16 dr, sr muls_16 dr, sr, dr
mulu dr, sr1, sr2 if (sr2 != dr)

 mov dr, sr2
mulu dr, sr1

mulu dr, sr1, sr2

mulu dr, sr mulu dr, sr mulu dr, dr, sr
mulu_16 dr, sr1, sr2 if (sr2 != dr)

 mov dr, sr2
mulu_16 dr, sr1

mulu_16 dr, sr1, sr2

mulu_16 dr, sr mulu_16 dr, sr mulu_16 dr, sr, dr
mulus dr, sr1, sr2 if (sr2 != dr)

 mov dr, sr2
mulus dr, sr1

mulus dr, sr1, sr2

mulus dr, sr mulu dr, sr mulus dr, dr, sr
mulsu dr, sr mulus dr, sr mulus dr, sr, dr
mulus_16 dr, sr1, sr2 if (sr2 != dr)

 mov dr, sr2
mulus_16 dr, sr1

mulus_16 dr, sr1, sr2

mulus_16 dr, sr not allowed not allowed
mulsu_16 dr, sr mulus_16 dr, sr mulus_16 dr, sr, dr
nop nop nop
not dr, sr1 not dr, sr1 not dr, sr1
or dr, sr1, sr2 if (sr2 != dr)

 mov dr, sr2
or dr, sr1

or dr, sr1, sr2

or dr, sr or dr, sr or dr, sr, dr
ori dr, sr1, imm if (sr1 != dr)

 mov dr, sr1
ori dr, imm

ori dr, sr1, imm

ori dr, imm ori dr, imm ori dr, dr, imm
rcon sr rcon sr rcon sr
reti reti reti
retu retu retu
scall scall scall
scon dr scon dr scon dr
sext dr, sr1, sr2 if (sr2 != dr)

 mov dr, sr2
sext dr, sr1

sext dr, sr1, sr2

sext dr, sr sext dr, sr sext dr, sr, dr

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 73/107

sexti dr, sr1, imm if (sr1 != dr)

 mov dr, sr1
sexti dr, imm

sexti dr, sr1, imm

sexti dr, imm sexti dr, imm sexti dr, dr, imm
sll dr, sr1, sr2 if (sr2 != dr)

 mov dr, sr2
sll dr, sr1

sll dr, sr1, sr2

sll dr, sr sll dr, sr sll dr, sr, dr
slli dr, sr1, imm if (sr1 != dr)

 mov dr, sr1
slli dr, imm

slli dr, sr1, imm

slli dr, imm slli dr, imm slli dr, dr, imm
sra dr, sr1, sr2 if(sr2 != dr)

 mov dr, sr2
sra dr, sr1

sra dr, sr1, sr2

sra dr, sr sra dr, sr sra dr, sr, dr
srai dr, sr1, imm if (sr1 != dr)

 mov dr, sr1
srai dr, imm

srai dr, sr1, imm

srai dr, imm srai dr, imm srai dr, dr, imm
srl dr, sr1, sr2 if (sr2 != dr)

 mov dr, sr2
srl dr, sr1

srl dr, sr1, sr2

srl dr, sr srl dr, sr srl dr, sr, dr
srli dr, sr1, imm if (sr1 != dr)

 mov dr, sr1
srli dr, imm

srli dr, sr1, imm

srli dr, imm srli dr, imm srli dr, dr, imm
st sr2, sr1, imm st sr2, sr1, imm st sr2, sr1, imm
st sr2, sr1 st sr2, sr1, 0 st sr2, sr1, 0
sub dr, sr1, sr2 if (sr2 != dr)

 mov dr, sr2
sub dr, sr1

sub dr, sr1, sr2

sub dr, sr subu dr, sr
not dr, dr
addi dr, 1

sub dr, dr, sr

subu dr, sr1, sr2 if (sr2 != dr)
 mov dr, sr2
subu dr, sr1

subu dr, sr1, sr2

subu dr, sr subu dr, sr
not dr, dr
addiu dr, 1

subu dr, dr, sr

swm imm swm imm swm imm
trap imm trap imm trap imm

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 74/107

xor dr, sr1, sr2 if (sr2 != dr)

 mov dr, sr2
xor dr, sr1

xor dr, sr1, sr2

xor dr, sr xor dr, sr xor dr, sr, dr

Table 3-15. Instruction mapping in 16-bit and 32-bit mode

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 75/107

4. COPROCESSOR INSTRUCTION SET

This chapter describes the machine instructions implemented in Milk
coprocessor. The instruction set syntax is made of an instruction
mnemonic followed by destination and source registers.

The abbreviations used this chapter are listed in Table 4-1.

Abbreviation Description
dr Destination register, number in the range 0..31
sr1, sr2 Source register, number in the range 0..31 (in case

that the instruction only needs one operand, it' s
simply named sr)

opc Opcode of Milk instructions

Table 4-1. Abbreviations used in coprocessor instruction set

Note that each of the supported instructions' mnemonics ends with a
number (coprocessor index), for example, fadd0, fadd1, fmul1, etc.
This is due to the fact that COFFEE™ RISC core supports up to 4
coprocessors, so any of them could be a floating-point unit (FPU), and
the one who should actually perform the operation is that indexed by
the number specified by the number at the end of the mnemonic. This
way, fadd0 is a floating-point addiction to be executed by coprocessor
number 0, fadd1 is a floating-point addiction to be executed by
coprocessor number 1, and so on (for this reason, in the following
pages are explained the instructions related to coprocessor number 0,
because the instructions related to the other ones are exactly the same
for meaning and syntax, and differs only for the coprocessor index).

fadd0

syntax: fadd0 dr, sr1, sr2
description: Single-precision floating-point (algebraic)
addiction to be executed by coprocessor number 0. The
contents of the source registers sr1 and sr2 are added
together and the result is placed to the destination register
dr. Overflow exception is raised if the result' s exponent
exceeds 127. Underflow exception is raised if the result' s
exponent exceeds -150. Together with overflow and
underflow, also inexact exception occurs. Invalid
operation exception occurs whenever both operands are
infinites with opposite signs, or when at least one of the
operands is a SNaN.

fsub0
syntax: fsub0 dr, sr1, sr2

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 76/107

description: Single-precision floating-point (algebraic)
subtraction to be executed by coprocessor number 0. The
contents of the source register sr2 is subtracted by the one
in sr1 are subtracted and the result is placed to the
destination register dr. Overflow exception is raised if the
result' s exponent exceeds 127.Underflow exception is
raised if the result' s exponent exceeds -150. Together with
overflow and underflow, also inexact exception occurs.
Invalid operation exception occurs whenever both
operands are infinites with opposite signs, or when at
least one of the operands is a SNaN.

fmul0
syntax: fmul0 dr, sr1, sr2
description: Single-precision floating-point
multiplication to be executed by coprocessor number 0.
The contents of the source registers sr1 and sr2 are
multiplied and the result is placed to the destination
register dr. Overflow exception is raised if one of the
operands is infinite and the other is a finite number, or if
the result' s exponent exceeds 127. Underflow exception is
raised if the result' s exponent exceeds -150. Together with
overflow and underflow, also inexact exception occurs.
Invalid operation exception occurs whenever one operand
is infinite and the other one is null, or when at least one of
the operands is a SNaN.

fdiv0
syntax: fdiv0 dr, sr1, sr2
description: Single-precision floating-point division to be
executed by coprocessor number 0. The content of the
source register sr2 is divided by the one in sr1 and the
result is placed to the destination register dr. Overflow
exception is raised if dividend is infinite and divisor is
zero, or if the result' s exponent exceeds 127. Underflow
exception is raised if the result' s exponent exceeds -150.
Together with overflow and underflow, also inexact
exception occurs. Invalid operation exception occurs
whenever both operands are infinite or both are null, or
when at least one of the operands is a SNaN. Division by
zero exception is raised when a finite non-null number is
divided by a null divisor.

fsqrt0
syntax: fsqrt0 dr, sr
description: Single-precision floating-point square-root
to be executed by coprocessor number 0. The content of
the source register sr is square-rooted and the result is

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 77/107

placed to the destination register dr. Invalid operation
exception occurs whenever radicand is negative, or when
it' s a SNaN.

fabs0
syntax: fabs0 dr, sr
description: Single-precision floating-point absolute
value (ABS) to be executed by coprocessor number 0.
The absolute value of the content of the source register sr
is placed to the destination register dr. Invalid operation
exception occurs whenever operand is a NaN.

fmov0
syntax: fmov0 dr, sr
description: The operand has to be moved to another
register by coprocessor number 0. The value of the
content of the source register sr is moved to the
destination register dr.

fneg0
syntax: fneg0 dr, sr
description: Single-precision floating-point sign
inversion to be executed by coprocessor number 0. The
value of the content of the source register sr is inverted in
sign and placed to the destination register dr. Invalid
operation exception occurs whenever operand is a NaN.

fnop0
syntax: fnop0
description: No operation is executed.

fcvt.s0
syntax: fcvt.s0 dr, sr
description: Integer to single-precision floating-point
conversion to be executed by coprocessor number 0. The
value of the content of the source register (considered as
an integer) sr is converted into single precision floating-
point format and placed to the destination register dr.

fcvt.w0
syntax: fcvt.w0 dr, sr
description: Single-precision executed by coprocessor of
the source floating-point and placed to the exception is
generated large argument (≤ -2147483649.0). Denormal
numbers are flattened to zero, and inexact result exception
is raised.

fcCONDITION0

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 78/107

syntax: fcCONDITION0 dr, sr1, sr2
description: Comparison to be executed by coprocessor
number 0. The contents of the source registers sr1 and sr2
are compared according to the condition specified in the
name of the instruction and the result is placed to the
destination register dr. Invalid operation exception occurs
when at least one of the operands is a NaN and MSB in
the opcode is set; result is unordered. NaN compares
unordered with everything including itself. Sign of zero is
ignored, so +0 = -0.
note: for more details about CONDITION look in Milk
documentation.

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 79/107

5. ASSEMBLER DIRECTIVES

Assembler directives are instructions to the assembler to perform
various bookkeeping tasks, storage reservation, and other control
functions. To distinguish them from other instructions, directive
names begin with a period.
Directives should by in lower-case (case sensitive).

.align N

Pad the location counter (in the current section) to a
particular storage boundary. N defines the number of zero
bits in LSB end of location counter:
N = 0 => byte boundary (8-bits)(no padding)
N = 1 => halfword boundary (16-bits)
N = 2 => word boundary (32-bits)
This directive has no effect if location counter is already
aligned properly.

.ascii “some text here”

Assemble text into consecutive addresses, one character
per byte. You can optionally use the backslash escape
characters. No trailing zero is added to terminate the
string. ASCII 8-bit conversion is used.

.byte [b1, b2, b3,...,bn]

Assemble bytes b1...bn to consecutive addresses and
increment location counter after each byte. If no
arguments are given, location counter is incremented by
one.

.bss

Start or continue bss section. In practice a bss section can
contain only allocation of zero initialized or uninitialized
data, like this:
my_variable_in_bss_section: .word 0
your_variable_in_bss_section: .word

.code16|32|N

This directive is used to switch instruction encoding
mode. With selector ‘32’ the assembler wil l switch to 32
bit mode outputting 32-bit machine instructions, with
selector ‘16’ 16-bit instructions are output. N
accommodates for future extensions to instruction set
architecture.
This directive should follow the section description
directive.

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 80/107

Note: before using one more time .codeXX directive in
the section, make sure SWM XX instruction was in use
before.

.data

Start or continue data section.

.double [n1,n2,n3,n4,...,nn]

Assemble double precision (64-bit presentation) floating
point numbers. Each number reserves eight bytes, so
location counter is incremented by eight after each
number. IEEE Standard 754 is followed. If no arguments
are given, location counter is incremented by eight and
zeros allocated. No rounding is done.

.equ SYMBOL, EXPRESSION

This directive sets the value of SYMBOL to
EXPRESSION. To define name aliases is used syntax
SYMBOL = VALUE.
Constants are global for whole code.

.err [“Error message”]

When the assembler encounters this directive, it prints the
string in quotes (if any given) and stops assembly process.

.extern SYMBOL[, SYMBOL_2, .., SYMBOL_N]

Define a symbol to be external. Assembler treats all
undefined symbols as external but it produces warning
message if some symbol was used as external, but was not
declared with .external directive.

.fill REPEAT, VALUE[, SIZE]

Fill REPEAT x SIZE memory locations with VALUE.
Location counter will be incremented by an amount of
REPEAT x SIZE. SIZE is size in bytes; allowed values are
1, 2, 4 or 8. If size is not specified, one byte is assumed.

.float [n1,n2,n3,n4,...,nn]

Assemble single precision (32-bit presentation) floating
point numbers. Each number reserves four byte, so
location counter is incremented by four after each
number. IEEE Standard 754 is followed. If no arguments
are given, location counter is incremented by four and
zeros allocated. No rounding is done.

.global SYMBOL[, SYMBOL_2, .., SYMBOL_N]

Define a symbol to be visible outside current source file.
Allows linking other modules with current module.

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 81/107

.hword [n1,n2,n3,n4,...,nn]

Assemble halfwords (16-bit integers) n1...nn and
increment location counter by two per argument. If no
arguments are given, location counter is incremented and
zeros assembled.

.include “ filename“

Include code from specified file. Is possible define path
with filename or include with –I argument in calling line.

.local label[, label2, …, labelN]

Define local labels for macro. It supposed be just in 2nd
macro line. In code it appears with the same name plus
number of macro use, e.g. in 1st time macro call it will be
label1, in 2nd – label2.

.lword [n1,n2,n3,n4,...,nn]

Assemble long words (64-bit integers) n1...nn and
increment location counter by eight per argument. If no
arguments are given, location counter is incremented by
eight and zeros assembled.

.macro macro_name[(arg1, arg2,..., argn)]

Start macro definition. Macros can have local labels
defined with .local directive in 2nd line (immediately after
macro name). Also is possible to define constants inside
macro or use already defined constants. Use of any
another directive inside macro is not allowed.

.endm

Mark the end of a macro definition. If .endm will not be
found after 100 lines, warning message is produced.

.org new_lc_value[, fil l_byte]

Define a new value for current location counter. You can
only advance location counter. It is not possible to go
backwards. The skipped bytes are filled with fill_byte,
which by default is zero. Note that you cannot use a label
as new_lc_value or you cannot use an expression as
new_lc_value.

.proc [name]

Start of procedure. Ignored like comment.

.endproc [name]

End of procedure. Ignored like comment.

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 82/107

.rdata
Start or continue read-only data section.

.space N

Reserve N bytes of space (increment the location counter
by N). Zeros are assembled?.

.section NAME[, TYPE, absolute_section_place]

Use the .section directive to assemble the following code
into a section named NAME. Section type (TYPE) can be
one of the following: b, x, d, r or nothing. Explanations of
section types are in Table 5-1.
If absolute_section_place is set, section is defined to be
absolute.

Convention Meaning
x Executable section (executable text) (loaded to

instruction memory area anyway, may contain PC
relative data).

r Read-only data section.
d Data section (initialized data) (read, write).
b Bss section (uninitialized data).
nothing Regular section (allocated, relocated, loaded). In

current version is the same like executable text
section.

Table 5-1. Section type conventions

.text

Start or continue text section.

.word [n1,n2,n3,n4,...,nn]
.word “Hello world!”

Assemble words (32-bit integers) n1...nn and increment
location counter by four after each parameter/character. If
no arguments are given, location counter is incremented
by four and zeros assembled. The second version
allocates space for a string and places ASCII codes of the
string to consecutive words (3 zero bytes are added
before each character).

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 83/107

6. PROGRAMMING CONSIDERATIONS

This chapter gives rules and examples to follow when designing an
assembly language program.
The chapter addresses topic:

• The use of registers, section and location counters, and stack
frames (Section 6.1)

This chapter does not address coding issues related to performance or
optimization.

6.1 General Coding Concerns

This section describes some general areas of concern to the assembly
language programmer:

• Usage of registers (Section 6.1.1)
• Control of section and location counters with directives

(Section 6.1.2)

Another general coding consideration is the use of data structures to
communicate between high-level language procedures and assembly
procedures. In most cases, this communication is handled by means of
simple variables: pointers, integers, Booleans, and single- and double-
precision real numbers. Describing the details of the various high-
level data structures that can also be used – arrays, records, sets, and
so on – is beyond the scope of this manual.

6.1.1 Register Use

The main processor has 2 sets of 32 32-bit integer registers. The uses
and restrictions of these registers are described in Table 1-1.

Register usage of a privileged user

When processor starts executing instructions after boot (see interface
document) following conditions are assumed: 32 bit instruction word
length, super user mode, register set SET2 for reading and writing and
all interrupts (also cop exceptions) disabled. Boot code has the
responsibility to initialize the special purpose registers to guarantee
proper handling of interrupts and coprocessor exceptions. User mode
can be entered by issuing the command retu (see Chapter 3 for more
information about instructions). Before passing the control, registers
SPSR and PR31 must be set appropriately. Executing retu causes

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 84/107

PSR to be overwritten by SPSR (not all flags though) and PC
(program counter) overwritten by PR31. That is, execution will start at
address saved to PR31 and with status flags saved in SPSR.
When an application program issues the command scall (requesting
some system/kernel service, for example), SPSR is overwritten with
PSR and PR31 is overwritten with link address (an address to return
when resuming application code). In practice this means that super
user is able to see the state in which the user was before calling system
code and is able to resume execution from the correct address. Also
the super user has full control over the user and the possibility to read
and alter the status bits of the user. An application program can pass
parameters to privileged software (and the other way around) in some
general purpose registers RXX , if desired , since privileged software
can read and write both sets of registers with the help of chrs
command. For more information about instructions scall, retu and
chrs see Chapter 3.

Register limitations in 16-bit mode

In 16-bit mode only the last eight registers from both sets are
available, that is registers R24...R31 from set 1 and PR24...PR31 from
set 2. Assembler provided straightforward notions to access registers
are listed in Table 6-1.
Condition registers C1...C7 are disabled in 16 bit mode. Register C0 is
always used (automatically selected) with conditional branches and
arithmetic.

Register
name

Software used name Description

32-bit mode
R0..R31 R0..R31 | r0..r31 Set 1 registers
PR0..PR31 R0..R31 | r0..r31 Set 2 registers
C0 .. C7 C0..C7 | c0..c7 Condition registers
CR0..CR31 CR0..CR31 | cr0..cr31 Coprocessor registers

16-bit mode

R24..R31 R0..R7 | r0..r7 Set 1 registers
PR24..PR31 R0..R7 | r0..r7 Set 2 registers
C0 C0 | c0 Condition registers
CR0..CR31 CR0..CR31 | cr0..cr31 Coprocessor registers

Table 6-1. Register name and software used name mapping

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 85/107

6.1.2 Using Directives to Control Sections and Location Counters

See Section 2.10 and Section 2.11 for details about sections and
location counters. Also see Chapter 5 for more information about
directives .org and .align.

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 86/107

7. OBJECT FILES

7.1 Object File Overview

Compilers and assemblers create object files containing the generated
binary code and data for a source file. Linkers combine multiple
object files into one file; loaders take object files and load them into
memory.
Note, in this document we speak about object files in COFF format.

What goes into an object file?

An object file contains basic information:
1. Header information: This is overall information about the file,

such as the size of code, the name of source file it was
translated from, and the creation date.

2. Object code: This is binary instructions and data generated by
a compiler or assembler.

3. Relocation information: This is a list of the places in the object
code that have to be fixed up when the linker changes the
address of the object code.

4. Symbols: These include global symbols defined in this module
and symbols to be imported from other modules or defined by
the linker.

5. Debugging information: This includes other information about
the object code that is not needed for linking but is useful to a
debugger (such as source file and line number information,
local symbols, and descriptions of data structures used by the
object code such as C structure definitions)

Figure 7-1 shows the overall structure of the object file.

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 87/107

Figure 7-1. The structure of the object file

The last four sections (relocation, line numbers, symbol table, and the
string table) may be missing. Also, if there are no unresolved external
references after linking, the relocation information is no longer needed
and it is absent. The string table is also absent if the source file does not
contain any symbols with names longer than eight characters.

Designing an object format

The design of an object format is a compromise driven by the various
uses to which an object file will put. A file may be linkable, used as
input by link editor or linking loader; executable, capable of being
loaded into memory and run program; loadable, capable of being
loaded into memory as a library along with a program; or any
combination of the three.

A linkable file contains extensive symbol and relocation information
needed by the linker along with the object code. The object code is
often divided up into many small logical segments that will be treated
differently by the linker. An executable file contains object code –
usually page aligned to permit the file to be mapped into the address
space – but doesn’t need any symbols (unless it will do run -time
dynamic linking) and needs little or no relocation information. The
object code is a single large segment or a small set of segments that
reflect the hardware execution environment (most often read-only vs.
read/write pages). Depending on the details of a system’s run -time
environment, a loadable file may consist solely of object code, or it
may contain complete symbol and relocation information to permit
run-time symbol linking.

There is some conflict among these applications. The logically
oriented grouping of linkable segments rarely matches the hardware-

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 88/107

oriented grouping of executable segments. Particularly on smaller
computers, linkable files are read and written by linker a piece at a
time, while executable files are loaded as a whole into main memory
(DOS linkable OMF and executable EXE).

The basic elements of the COFF definition

A simple abstraction is essential to the COFF concept, an abstraction
that identifies the most seminal, common denominators of all
operating systems.

The COFF system maps the three abstract elements of a program:
machine code, initialized data, and uninitialized data, to three
corresponding special sections in the COFF file:

• The text section
• The data section
• The bss section

The COFF file also includes areas for relocation information and
symbolic debug information. All this information is organized as a
data structure.
The COFF defined data structure includes an organized system of
pointers that allow efficient access to, and manipulation of, any of the
three sections, as well as the symbolic debug information and
relocation information areas that contain useful information to the
linker.

The COFF definition creates two major benefits: enhanced portability
and system extensibility.

7.2 Object File Content

A section is the smallest portion of the object file that is relocated and
treated as one separate and distinct entity. Text sections contain
executable machine code and the operating system treats them as write
protected. Data sections contain initialized program code and are
readable and writable. Bss sections basically contain information on
how large the uninitialized data area is. The bss section is usually
made a contiguous with the data section when the program is loaded
into memory.

Software defined data structures are also easily extensible. Though the
text, data and bss sections are special, they are not sacrosanct. If
necessary, it is possible to add sections to the COFF definition.

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 89/107

Also the assembler’s .section directive was created in response to the
need of a special section. The .section allows the specification of a
section name, and the section content’s type. User defined sections
follows main sections.

COFF file headers

The roughly fifty or so bytes at the beginning of the COFF file contain
the COFF file headers. The COFF file headers hold, among other
things, the information indicating whether or not a file is executable
and general run-time parameters. The header is also the beginning
point for the system of pointers that relate the different structures of
the COFF file.

There are two COFF headers; both are defined as structures that
contain pertinent COFF information fields. The first is called the file
header, and the second (which may or may not be present) is called
the optional header.

7.2.1 The File Header

The first of the two COFF headers are usually simply referred to as
the file header and contains general information such as a file time
stamp and a magic number.

The file header has 20 bytes of information as shown in Table 7-1.

Bytes Name Description
0-1 f_magic Magic number for target machine (0xC00F for COFFEE

™ RISC core)
2-3 f_nscns Number of sections contained within this file (main and

subsections)
4-7 f_timdat Time and date stamp indication when the file was created,

expressed seconds since 00:00:00 GTM, January 1, 1970
8-11 f_symptr File pointer containing the starting address of the symbol

table
12-15 f_nsyms Number of entries in the symbol table
16-17 f_opthdr Number of bytes in the optional header
18-19 f_flag Flags

Table 7-1. File header information

In general, f_nscns field says how many section headers are
following file header (and optional header).
File pointer is the byte offset to the start of the symbol table from
beginning of the file. The flags describe the type of the object file.
Currently defined flags are presented in Table 7-2.

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 90/107

Flag Name Description
0x0001 F_RELFLG If set, there is no relocation information in this file. This

is usually clear for objects and set for executables
0x0004 F_LNNO If set, all l ine number information has been removed

from the file (or was never added in the first place)
0x0008 F_LSYMS If set, all local symbols have been removed from the file

(or were never added in the first place)

Table 7-2. Currently defined flags

7.2.2 The Optional Header

The second COFF header is known by at least four names: optional
header, standard header, system a.out header, and auxiliary header.
In this document we choose to call the second header the optional
header.

Most of the fields in the optional header provide run-time information
about the COFF file. And since only executable files need run-time
information, it is the linker that fill s in the appropriate values.
Typically, assembler-created object files do not contain the optional
header, but if the optional header is present, most of its values are
meaningless (and not necessary initialized to zero).

Crasm (COFFEE ™ RISC Assembler) provides COFF object file
without optional header (f_opthdr is always zero).

7.2.3 Section Headers

Section headers follow the optional header. The position of the first
section header is found by adding the size of the file header to the
value found in the f_opthdr that represent the size of optional header.

The section header contains two fields that play a key role in the
process of relocation: s_relptr, the pointer to the relocation entries;
and s_scnptr, the pointer to the section raw data.

Subsections headers can follow section header. Amount of subsection
headers is set in s_flag field. All subsections are part of main section,
just divided by coding mode. Mode is set in s_flag field.

Each section header has 40 bytes of information as shown in Table
7-3.

Bytes Name Description
0-7 s_name 8-character null padded section name

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 91/107

8-11 s_paddr Physical address of section. For unlinked objects, this
address is relative to the object’s address space (i.e. first
section is always at offset zero)

12-15 s_vaddr Virtual address of section. Always the same value as
s_paddr

16-19 s_size Section size in bytes. You should always read this many
bytes from the file, beginning s_scnptr bytes from
beginning of the object. Zero if section is empty

20-23 s_scnptr File pointer to raw data for this section
24-27 s_relptr File pointer to relocation entries for this section
28-31 s_lnnoptr File pointer to line number entries for this section
32-33 s_nreloc Number of relocation entries for this section. Beware files

with more than 65535 entries; this field truncates the
value with no other way to get the “real” value

34-35 s_nlnno Number of line number entries for this section. Beware
files with more than 65535 entries; this field truncates the
value with no other way to get the “real” value

36-39 s_flags Flags

Table 7-3. Section header information

The size of a main section is padded to a multiple of 4 bytes.
Long names of sections are kept in string table; in that case s_name
field starts with slash (‘/’), and has offset to string table where the
name is located.
Flags describe section contents and determine how the linker and
system loader handle the section.
Detailed explanation of s_flag bytes is in Table 7-4.

Byte Description
1 Section mode description
2-3 Amount of subsections in main section
4 Section contents description

Table 7-4. Detailed s_flag explanation

Possible values of section mode are in Table 7-5. Possible values of
section contents are in Table 7-6.

Flag Description
0x00 Main section (mode

unimportant)
0x10 32-bit mode subsection
0x01 16-bit mode subsection

Table 7-5. Section mode flags

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 92/107

Flag Name Description
0x10 STYP_RDATA Section contains only read-only data
0x20 STYP_TEXT Section contains executable text; text sections are

allocated, relocated, and loaded
0x40 STYP_DATA Section contains initialized data; data sections are

allocated, relocated, and loaded
0x80 STYP_BSS Section contains only uninitialized data; bss sections

are only allocated

Table 7-6. Section contents flags

7.2.4 Section Data

The raw data for each section begins at a 4-byte boundary in the file.
Section data are in the same sequence as sections headers. Each
section data can be found by using s_scnpt pointer value from that
section header.

Predefined section header and section raw data sequence is presented
in Figure 7-2 (it is similar to OMAGIC definition).

.text
.rdata

user defined text or rdata
section 1

…
user defined text or rdata

section n T
ex

t s
eg

m
en

t

.data
user defined data section 1

…
user defined data section n D

at
a

se
gm

en
t

.bss
user defined bss section 1

…
user defined data section 1 B

ss

se
gm

en
t

Figure 7-2. Predefined section raw data sequence

7.2.5 Section Relocation Information

A relocation entry is created by the assembler for every instance of an
address reference that requires patching by the linker. The relocation
entry’s field values identify the area in raw data that needs patching
and associates that area with a symbol table entry that defines the run-
time address – the value used to patch the raw data. Note, some
instructions can have 2 relocation entries.

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 93/107

Each relocation entry has 10 bytes of information as shown in Table
7-7.

Bytes Name Description
0-3 r_vaddr (Virtual) address of relocation. This is a byte-offset value

relative to the start of its raw data
4-7 r_symndx Pointer to appropriate symbol table entry that contains

run-time address information (counted from 0). The
symbol table entry is accessed by adding this value,
r_symndx, to the value of f_symptr.

8-9 r_type Type of relocation

Table 7-7. Relocation entry information

The r_type field tells the linker which algorithm to use during the
address calculation process. Currently defined types are in presented
in Table 7-8.

Type Bit form Description
0x67C8 011 00111

11001 000
Start in 3rd bit, 7 least significant bits after shifting to
right by 25; simple relocation independent on mode

0x6790 011 00111
10010 000

Start in 3rd bit, 7 least significant bits after shifting to
right by 18; simple relocation independent on mode

0x6758 011 00111
01011 000

Start in 3rd bit, 7 least significant bits after shifting to
right by 11; simple relocation independent on mode

0x6720 011 00111
00100 000

Start in 3rd bit, 7 least significant bits after shifting to
right by 4; simple relocation independent on mode

0x6400 011 00100
00000 000

Start in 3rd bit, 4 least significant bits, no shifting; simple
relocation independent on mode

0x4F00 010 01111
00000 000

Start in 2nd bit, 15 least significant bits, no shifting;
simple relocation independent on mode

0x2178 001 00001
01111 000

Start in 1st bit, 1 least significant bit after shifting to right
by 15; simple relocation independent on mode

0x4F80 010 01111
10000 000

Start in 2nd bit, 15 least significant bits after shifting to
right by 16; simple relocation independent on mode

0x21F8 001 00001
11111 000

Start in 1st bit, 1 least significant bit after shifting to right
by 31; simple relocation independent on mode

0x0000 000 00000
00000 000

Start in 0 bit, 32 least significant bits (zero length is a
nonsense, so it should be assume as 32-bit long), no
shifting; simple relocation of external or internal defined
word independent on mode

0x1606 000 10110
00000 110

Start in 0 bit, 22 least significant bits, no shifting; 32-bit
mode external PC relative relocation

0x1906 000 11001
00000 110

Start in 0 bit, 25 least significant bits, no shifting; 32-bit
mode external PC relative relocation

0x0A05 000 01010
00000 101

Start in 0 bit, 10 least significant bits, no shifting; 16-bit
mode external PC relative relocation

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 94/107

00000 101 mode external PC relative relocation

Table 7-8. Currently defined relocation types

Detailed explanation of bit form of relocation type is in Table 7-9.

Bit Description
15-13 Bit position where relocation starts; in byte specified by

r_vaddr
12-8 Length of immediate (address) value in bits; least

significant bits
7-3 Length of shift to left in bits
2-0 Relocation mode

Table 7-9. Explanation of a bit form in relocation type

7.2.6 Line Numbers Information

Line number information is a special part of the COFF file that
contains line number structures. The line number structure associates
every line in the source file that represents machine code with its
relevant address in the text section. Line number structures allow
creation of breakpoints by symbolic definition, and support source
code trace of program execution.

Crasm (COFFEE ™ RISC Assembler) provides COFF object file
without line numbers (s_lnnoptr, s_nlnno and x_nlinno fields are
always zero).

7.2.7 Symbol Table Information

Though the symbol table entry is not an excessive large structure, the
information it contains is the most complex of the COFF definition.
This is because of the complex nature of debug information. All
symbols have a symbol table entry, but not all have relocation
information.

COFF defines a dual role for the symbol table: defining the run-time
address for the relocation process, and providing symbolic debug
information. For the moment, debug information aspect is ignored and
instead the explanation concentrates only on those parts of the symbol
table entry that play a role in the relocation process.

Symbols appear in the sequence show in Figure 7-3(order is very
important only for debug information).

Static symbols and labels

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 95/107

Defined global symbols
Undefined global symbols

Figure 7-3. Symbols appearing sequence

The symbol table consists of at least one fixed-length entry per
symbol with some symbols followed by auxiliary entries of the same
size. The entry for each symbol is a structure that holds the value, the
type, and other information.

All symbols, regardless of storage class and type, have the same
format for their entries in the symbol table. The symbol table entries
each contain 18 bytes of information. The meaning of each of the
fields in the symbol table entry is described in Table 7-10. Note that
indices for symbol table entries begin at 0 and count upward. Each
auxiliary entry also counts as one symbol.

Bytes Name Description

0-7 n_name 8-character null padded section name or an index to a
symbol in the string table

8-11 n_value Relocatable address of the symbol. This value is placed
into the area in the section’s raw data pointed to by the
relocation structure’s r_vaddr value

12-13 n_scnum Section number where the symbol is defined. The first
section is section one

14-15 n_type Basic and derived type specification. Currently not in use
and always is 0

16 n_sclass Storage class of symbol. Tells where and what the symbol
represents

17 n_numaux Number of following auxiliary entries

Table 7-10. Symbol table information

7.2.7.1 Symbol name

The first 8 bytes in the symbol table entry can have two meanings. If
the symbol name is eight characters or less, the (null-padded) symbol
name is stored there. If the symbol name is longer than eight
characters, then the entire symbol name is stored in the string table. In
this case, the first byte is zero, and the second one is the offset
(relative to the beginning of the string table) of the name in the string
table as shown in Table 7-11.

Bytes Name Description
0-3 n_zeroes Zero in this field indicates the name is in the string table
4-7 n_offset Offset of the name in the string table

Table 7-11. Description of a symbol name

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 96/107

7.2.7.2 Symbol value

The meaning of a symbol value depends on its storage class. Crasm
(COFFEE ™ RISC Assembler) used storages classes are listed in
chapter Storage Class. In all cases value has a meaning relocatable
address.

Relocatable symbols have a value equal to the virtual address of the
symbol (relative to the beginning of section raw data). When the
linker relocates the section, the value of theses symbols changes.

7.2.7.3 Section number

The meaning of n_scnum field is summarized in Table 7-12.

Value Name Description
-1 N_ABS Absolute symbol
0 N_UNDEF Undefined (external) symbol
> 1 N_SCNUM Section number

Table 7-12. The meaning of n_scnum field

The subsections are counted as sections too, because they section
headers are listed. Section numbers are directly connected with section
headers: n_scnum = 1 links to 1st section header.
Subsections aren’t listed in Symbol Table.

7.2.7.4 Storage class

The storage class field n_sclass has one of the values described in
Table 7-13.

Value Name Description
0x00 C_NULL –
0x02 C_EXT External (public) symbol
0x03 C_STAT Static (private) symbol
0x06 C_LABEL Label

Table 7-13. Storage class field n_sclass values

7.2.7.5 Auxiliary entries

An auxiliary table entry of a symbol contains the same number of
bytes as the symbol table entry (18 bytes). However, unlike symbol
table entries, the format of an auxiliary table entry depends on symbol
type and storage class.

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 97/107

Crasm (COFFEE ™ RISC Assembler) uses auxiliary entries just for
sections. The format is shown in Table 7-14.

Bytes Name Description
0-3 x_scnlen Section length
4-5 x_nreloc Number of relocation entries
6-7 x_nlinno Number of line numbers
8-17 – Unused (padded with zeros)

Table 7-14. The format of a auxiliary table entry

7.2.8 String Table Information

The string table is the final component of the symbolic system. If a
symbol exceeds eight characters, the name field in the symbol table
structure does not contain the name, but instead it is an offset in the
string table. The string table consists of null-terminated strings;
therefore it can support symbol names of any length.

The first four bytes of the string table is the size of the string table in
bytes; offsets into the string table, therefore, are greater than or equal
to 4.
An empty string table always has the first four bytes used for defining
the length, but the length value in this case is 0.

7.3 Assembler and Linker Process of Relocation

This section presents a step-by-step walkthrough of a simple
relocation process.
The simple relocation case occurs only when one source file is
compiled and linked. This is not very realistic, since most applications
consist of several source files that have external symbolic references.
Though lacking realism, the simple relocation case is the best way to
explain the relocation process.

Relocatable code before linking

The following example shows address encoding of a machine code
symbolic access to data defined in the data section:

Address Address Opcode Source
in code in section
--
 .TEXT
00000000 00000000 0100101000000100 xor r4, r4
00000002 00000002 1010100001101100 ori r4, @label
00000004 00000004 0011010001110100 slli r4, 7
00000006 00000006 1010101001101100 ori r4, @label
00000008 00000008 0011010001110100 slli r4, 7

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 98/107

0000000A 0000000A 1010101011001100 ori r4, @label
0000000C 0000000C 0011010001110100 slli r4, 7
0000000E 0000000E 1010101100001100 ori r4, @label
00000010 00000010 0011010001000100 slli r4, 4
00000012 00000012 1010100001110100 ori r4, @label
 .DATA
00000014 00000000 ... <data>
...
1B36CE32 1B36CE1E 01100001 label: a
...
1B36CE34 1B36CE20 <data>

Note, this code is produced by the assembler. In original source code
text section looks like this:

.text

.code16
ldra r4, label

The object file created by the assembler results in the ori r4,

@label instructions finding label at address 0x1B36CE1E. Whole
address is too long to fit into ORI instruction, so it is translated into
32-bit binary (0b00011011001101101100111000011110), divided
into separate parts and written into separate ORI instructions (the
emboldened portion of the opcode).

00011011001101101100111000011110 - original address (0x1B36CE1E)
0001101 - 1st ORI
 1001101 - 2nd ORI
 1011001 - 3rd ORI
 1100001 - 4th ORI
 1110 - 5th ORI

There is no need to regenerate original address value from ORI (LUI or
LLI) instructions (using relocation type r_type field from relocation
entries table), because each instruction relocation entry has index to
symbol table entry (n_symndx) where this value is located in n_value
field.

Linking this object file causes the relocation process to be performed.
For the moment, assume that linked executable files have the text
section starting at 0x0, and the data section starting at 0x100. This
means that the linker updates (or relocates) the ori r4, @label
instructions symbolic reference to label with the correct run-time
address.

Each ORI instruction has different relocation entry, but they point to
the same symbol table entry.

The 1st ORI instruction relocation information is following:
00000003 00000004 67C8

That means:

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 99/107

r_vaddr = 0x3
r_symndx = 0x4

r_type = 0x67C8 (Start in 3rd bit, 7 least significant bits after
shifting to right by 25; simple relocation)

Linker should understand current line as follows – the address value
from symbol table entry 4 should be shifted to right by 25 bits and 7
least significant bits are written into byte 0x3 (relative to text section –
because this relocation entry depends to text section) begin with 3rd bit
position.

The 2nd ORI instruction relocation information is following:
00000007 00000004 6790

That means:
r_vaddr = 0x7
r_symndx = 0x4

r_type = 0x6790 (Start in 3rd bit, 7 least significant bits after
shifting to right by 18; simple relocation)

Linker should understand current line as follows – the address value
from symbol table entry 4 should be shifted to right by 18 bits and 7
least significant bits are written into byte 0x7 (relative to text section –
because this relocation entry depends to text section) begin with 3rd bit
position.

The 3rd ORI instruction relocation information is following:
0000000B 00000004 6758

That means:
r_vaddr = 0xB
r_symndx = 0x4

r_type = 0x6758 (Start in 3rd bit, 7 least significant bits after
shifting to right by 11; simple relocation)

Linker should understand current line as follows – the address value
from symbol table entry 4 should be shifted to right by 11 bits and 7
least significant bits are written into byte 0xB (relative to text section
– because this relocation entry depends to text section) begin with 3rd
bit position.

The 4th ORI instruction relocation information is following:
0000000F 00000004 6720

That means:
r_vaddr = 0xF
r_symndx = 0x4

r_type = 0x6720 (Start in 3rd bit, 7 least significant bits after
shifting to right by 4; simple relocation)

Linker should understand current line as follows – the address value
from symbol table entry 4 should be shifted to right by 4 bits and 7
least significant bits are written into byte 0xF (relative to text section –

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 100/107

because this relocation entry depends to text section) begin with 3rd bit
position.

The 5th ORI instruction relocation information is following:
00000013 00000004 6700

That means:
r_vaddr = 0x13
r_symndx = 0x4

r_type = 0x6700 (Start in 3rd bit, 4 least significant bits, no
shifting; simple relocation)

Linker should understand current line using following instructions –
the from address value from symbol table entry 4 (without shifting) 4
least significant bits are written into byte 0x13 (relative to text section
– because this relocation entry depends to text section) begin with 3rd
bit position.

The symbol information (from symbol table entry 4) is following:
6c6162656c000000 1B36CE1E 0002 0000 06 00

That means:
n_name = label
n_value = 0x1B36CE1E

(or 0b00011011001101101100111000011110)
n_scnum = 0x2 (points to .data section)
n_type = 0x0

n_sclass = 0x6 (C_LABEL)
n_numaux = 0x0 (no auxiliary entries)

Linker algorithm

One way how linker can calculate relocated address:
1. Linker sets the run-time start addresses for sections.
2. Linker gets current relocation address from symbol table entry

(which is indexed by r_symndx) n_value field.
3. Linker calculates new relocation address by adding run-time

start address of section (which number is in symbol entry
n_scnum field) and current relocation address (because it is
relative offset of the symbol within the section).

4. Now linker needs to do manipulations with new calculated
address. This is needed because address is assumed to be 32-
bits long but places for immediate values in instructions are
less. Manipulations are described in r_type:

• Linker needs shift to left new value by so many bits as
it is set in 7..3 bits from r_type;

• Linker takes so many least significant bits as it is set in
12..8 bits from r_type;

5. Linker gets byte address in raw data with pointer r_vaddr and
exact bit position is set in 15..13 bits from r_type. That is

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 101/107

starting point for writing bits that it took in step 4. Note, bits
are needed to be written form right to left starting from least
significant.

Example of 2nd ORI instruction:

1. The new address of data section is 0x100

2. Symbol table entry 4 Æ6c6162656c000000 1B36CE1E
0002 0000 06 00

IMM address is 0x1B36CE1E (n_value fielf).

3. New address value = 0x1B36CE1E + 0x100 = 0x1B36CF1E

4. 1B36CF1E in 32-bit binary is
0b00011011001101101100111100011110
Relocation entry for this instruction Æ 00000007
00000004 6712
r_type = 0x6790 can be written:
011 00111 & 10010 000
3 | 7 | 18 | 0

Linker should understand whole line as follows – the
address of IMM from symbol table entry 4 (note: entry
counting starts form 0, auxiliary entries are counted too)
should be shifted to right by 18 bits and 7 least significant
bits are written into byte 0x7 (relative to text section
because this relocation depends to text section) begin with
3rd bit position.

• We need shift value
0b00011011001101101100111100011110 to right
by 18. We get 0b00011011001101

• For as important are just 7 least significant bits, so
we get 0b1001101

5. New value from step 4 is written into 0x7 byte begin with

3rd bit position.

00000006 10101010 01101100 ori r4, @label
 6th byte 7th byte
00000006 1010101001101 100 ori r4, @label
 ^
 |
 3rd bit
00000006 101010 1001101 100 ori r4, @label
 <-
 7 bits long IMM value

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 102/107

Relocatable code after linking

The relocated code looks like this:

Address Opcode Source
--
 .TEXT
00000000 0100101000000100 xor r4, r4
00000002 1010100001101100 ori r4, @label
00000004 0011010001110100 slli r4, 7
00000006 1010101001101100 ori r4, @label
00000008 0011010001110100 slli r4, 7
0000000A 1010101011001100 ori r4, @label
0000000C 0011010001110100 slli r4, 7
0000000E 1010101110001100 ori r4, @label
00000010 0011010001000100 slli r4, 4
00000012 1010100001110100 ori r4, @label
 .DATA
00000100 <data>
...
1B36CF1E 01100001 label: a
...
1B36CF20 <data>

After linking expressions like address in code (relative to start of
whole source code/file) and address in section (relative to start of
section) isn’t used. Now the address depends on new value where
section is relocated.
The new address of the label is 0x1B36CF1E (old value plus new
address of data section start), in 32-bit binary it is
0b00011011001101101100111000011110. This value is shifted and
parted according to defined relocation types r_type (the emboldened
portion of the opcode).

00011011001101101100111100011110 - original address (0x1B36CF1E)
0001101 - 1st ORI
 1001101 - 2nd ORI
 1011001 - 3rd ORI
 1110001 - 4th ORI
 1110 - 5th ORI

7.4 Object-File Formats (OMAGIC, NMAGIC, ZMAGIC)

The optional header stores run-time information about the object. Its
magic number field indicates how the file is to be organized in virtual
memory.

The possible image formats are:

• Impure Format (OMAGIC) (Section 7.4.1)

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 103/107

OMAGIC files are typically relocatable object files. They are
referred to as “impure” because the text segment is w ritable.

• Shared Text Format (NMAGIC) (Section 7.4.2)
NMAGIC files are static executables that use a different
organization from the default ZMAGIC layout. The NMAGIC
format is historical and offers no special advantages. In an
NMAGIC file, the text segment is shared.

• Demand Paged Format (ZMAGIC) (Section 7.4.3)
ZMAGIC files are executable files or shared libraries. This
format is referred to as demand-paged because its segments are
blocked on page boundaries, allowing the operating system to
page in text and data as needed by running process.

The ordering of section within segment is flexible. All following
figures depict the default ordering as laid out by the linker.
The default segment ordering, which places the text segment before
the data segment, is flexible. However, the bss segment is required to
contiguously follow the data segment, wherever the data segment is
located.

All three formats are constrained by the following restrictions:

• Segments must not overlap
• The bss segment must follow the data segment

7.4.1 Impure Format (OMAGIC) Files

The typically OMAGIC format is shown in Figure 7-4.

Figure 7-4. OMAGIC layout

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 104/107

Features:

• Segments must not overlap
• The bss segment must follow the data segment
• Starting section addresses are aligned on a 16-byte boundary
• Pre-link OMAGIC objects are zero-based, with the data

segment contiguous to the text segment
• May contain relocation information
• Cannot be a shared object

OMAGIC layout is most commonly used for pre-link object files
produced by compilers. Post-link OMAGIC files tend to be used for
special purposes such as loadable device drivers or on input objects.

OMAGIC files can also be executable. A programmer might also
choose to use an OMAGIC format for self-modifying programs or for
any other application that has a reason to write to the text segment.

7.4.2 Shared Text (NMAGIC) Files

The NMAGIC file format is of historical interest only. The typically
NMAGIC format is shown in Figure 7-5.

Figure 7-5. NMAGIC layout

Features:

• Segments must not overlap
• The bss segment must follow the data segment

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 105/107

• Text and data segment addresses fall on page-size boundaries.
The bss segment is aligned on a 16-byte boundary

• Cannot contain relocation information
• Cannot be a shared object

7.4.3 Demand Paged (ZMAGIC) Files

The ZMAGIC format can have 2 different layouts:
• Layout for shared objects shown in Figure 7-6.

Figure 7-6. ZMAGIC dynamic layout

• Layout for static executable objects shown in Figure 7-7.

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 106/107

Figure 7-7. ZMAGIC static layout

Features:

• Segments must not overlap
• The bss segment must follow the data segment
• Text and data segments are blocked; the blocking factor is the

page size
• Can be either a shared or nonshared object
• Cannot contain relocation information, but shared objects may

contain dynamic relocation information

The .rdata and .tlsinit sections are shown as a part of the text
segment. However, it is possible that one or both of those sections
might be in the data segment. They are placed in the data segment
only if they contain dynamic relocations.

COFFEETM RISC CORE Assembler Manual (Assembly Language Programmer’s Guide) Version 0.7

Modified: 18.02.2005 107/107

8. REFERENCES

1. Linkers and Loaders, John R.Levine.
2. Understanding and Using COFF, Gintaras R.Gircys.
3. Developer’s Topics, Chapter 7 – Common Object File Format.

