
 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

1 Introduction

To most people, embedded systems are not recognizable as computers. Instead, they are hidden

inside everyday objects that surround us and help us in our lives. Embedded systems typically do

not interface with the outside world through familiar personal computer interface devices such as a

mouse, keyboard and graphical user interface. Instead, they interface with the outside world through

unusual interfaces such as sensors, actuators and specialized communication links.

Real-time and embedded systems operate in constrained environments in which computer memory

and processing power are limited. They often need to provide their services within strict time

deadlines to their users and to the surrounding world. It is these memory, speed and timing

constraints that dictate the use of real-time operating systems in embedded software.

1.1 Motivation

The motivation for this work was the requirement of an operating system that could do all the basic

functionality of a real time Operating system (OS) and is Linux flavoured for the COFFEE RISC

Core TM that was developed in the Institute of Digital and Computer Systems at Tampere University

of Technology, Finland. Linux is becoming more and more powerful as there are millions of minds

working on it. There are forums where Linux guys working on the related things discuss on the

efficiency of the code they wrote for the Linux OS, lot of discussion is made on the particular code

and efforts are made to come with the solution for the drawback it has (if any). Once the piece of

code is there in the OS, as it is an open source, many will use if and find any drawback it has (if

there are any), also try to figure out if the security is compromised in any sort. If anything is found

it will be discussed in the forum related to the specific topic (there are many forums which are

dedicated to a specific topic like device drivers only, emulation board problems etc) and the

problem is solved in the very early stages before anyone else would find and use that drawback for

wrong purposes. Each line of the code will be there in the OS after vigorous testing by the

programmer. Obviously the loop holes left by him will be filled by guys like us who are using it.

1.2 Problem Formulation

The work is intended to result in the operating system that would give the same interface as the

other earlier versions of Linux with least new interfaces that could make the developer of the

application who would run the application on the COFFEE processor think as if he is running on

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

Linux kernel, i.e. to port the Linux flavoured kernel uClinux to COFFEE. This was a difficult job

because of

• The job requires identifying the processor dependent and independent codes in the kernel.

• The adaptation to the new instruction set.

• Need of understanding of the processor architecture thoroughly.

• Need of good understanding of the real time operating system concepts.

• Good programming skills at least in C and ASSEMBLY languages.

• Testing OS with the tools that were also under development and probably with some bugs in

them and finding where the problem is i.e. in the kernel or in the tool chain or was it because

of lack of understanding between the tool chain and the kernel.

The main problems that are addressed in this thesis are

• Definition and characterizing the real time operating system in general

• Structuring and categorizing the existing scheduling and memory security methods in real-

time operating systems.

• Detailed explanation of how and where processor dependent codes are mapped to the

existing versions of the uClinux.

• Difference in behaviour of CUP-OS (name of the operating system for our Processor) to the

uClinux.

1.3 Method

In order to solve these problems study and analysis of current literature in the Real-Time Operating

Systems (RTOS) area was conducted thoroughly. An analysis was performed and the result

structured in order to make it general and useful for the further study. Second, a detailed study of

the available popular processors using same flavour of operating systems area was performed, and

also observing and analyzing the way of utilizing the resources which include the register set(s),

timers and other things related to OS, the results summarized and categorized. These results form a

structured definition and description of concepts and services that should be ported. This also forms

the basis for the rest of the study.

In order to make more efficient use of the processor that was designed in the Institute of Digital and

Computer Systems of Tampere University of Technology, a very efficient and reliable OS was

proposed by the team and Linux is now known to be the best and fast evolving operating system, it

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

was chosen that the port to be a Linux flavoured. This will fulfil the requirement of having

thoroughly tested algorithms to be inserted into the algorithms that are processor dependent.

With the requirements and specifications based on many literature findings and the examples

practical constraints the evolved operating system was found useful and working well to the

proposed requirements with some small modifications and limitations. During this process some

ideas for the future work (section 10.3) was also discovered and are suggested in the final chapter.

1.4 Disposition

Until now Chapter 1 presented a general picture of concepts that inspired me in working in this

project with the details of the background needed and possible future works. Chapter 2 explains the

real-time OS concepts briefly which will be helpful to understand how far CUP-OS is able to

accomplish these tasks by reading through the chapters coming after this one. Chapter 3 gives some

background needed about the COFFEE RISC CoreTM so as to make the understanding of the

concepts in the further chapters more clear. Processes are a fundamental abstraction offered by

Linux and are introduced in Chapter 4.Here we also explain how each process runs either in an

unprivileged User Mode or in a privileged Kernel Mode. The simple Memory Management of using

the data memory fairly and efficiently is given very shortly in Chapter 5. Transitions between User

Mode and Kernel Mode happen only through well-established hardware mechanisms called

interrupts and exceptions. Process running in User Mode makes requests to the kernel that is how

system calls are implanted for coffee and the compatibility for the API (Application Programmer

Interface) for adding more systems calls in the future; all these features represent the kernel entry

and exit points while running user applications which are introduced in Chapter 6. One type of

interrupt is crucial for allowing Linux to take care of elapsed time; further details on such Timing

Measurement can be found in Chapter 7.

Chapter 8 explains how Linux executes, in turn, every active process in the system so that all of

them can progress toward their completion that is about Process Scheduling. Chapter 9 covers a

very detail description of how the testing was made on the kernel and the test cases and the test

environment used to test each of its modules. In Chapter 10 we see how the problems that were

discussed in the first chapter were overcome and some conclusions about the work and ending with

the future works that will follow this work immediately.

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

2 Real Time Operating System Concepts

An operating system is the interface between a user's program and the underlying computer

hardware. It also manages the execution of user programs such that multiple programs can run

simultaneously and access the same hardware [7]. Everyone who uses a computer encounters an

operating system, whether it is Windows, Mac-OS, Linux, DOS, or UNIX.

This chapter describes the architecture and functionality of an operating system and then

summarizes the requirements of a real-time operating system. Discussion of standards and of

specific details will be limited to Unix-like operating systems, since Linux is a Unix-like OS and

CUP-OS is a Linux-like OS. The chapter concludes with an overview of real time kernels.

2.1 Architecture of an Operating System

An operating system, or more specifically the core or kernel of the operating system, is always

resident in memory and provides the interfaces between user programs and the computer hardware.

The name kernel follows from the analogy of a nut, where the kernel is the very heart of the nut

and, in the computing domain, the kernel is the very heart of the operating system.

COFFEE RISC Core TM is based on Harvard architecture where data memory space is same for both

user and kernel and the processor and kernel both jointly have the responsibility of making use of

the memory securely. The kernel of a multi-tasking operating system can manage multiple user

programs running simultaneously in user space so that each program thinks it has complete use of

all of the hardware resources of the computer and, other than for intentional messages sent between

programs, each program thinks that it has its own memory space and is the only program running.

Communication between user-space programs and the kernel code is achieved through system calls

to the kernel code. These system calls typically are to access shared physical resources such as disk

drives, serial/parallel ports, network interfaces, keyboards, mice, display screens, and audio and

video devices [19]. One unifying aspect of Linux/Unix systems is that all the physical resources

appear to the user programs as files and are controlled with the same system calls.

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

Figure 1: Outer look of the Operating System Interface and Services. [19]

All of the input/output activity is controlled by the kernel code so that the user-space programs do

not have to concern the details of sharing common physical resources. Device-specific drivers in the

kernel manage those details. An operating system is thus tailored to run on specific computer

hardware and it isolates user programs from the specifics of the hardware, allowing for portability

of user-space application code.

The architecture of an operating system is thus a core or kernel that remains in memory at all times,

a set of processes in user-space that support the kernel, plus various modules and utility programs

that remain stored in COFFEE Core TM until needed. The kernel manages simultaneous execution of

multiple user programs and isolates user programs from the details of managing the specific

hardware of the computer.

2.2 Services of the operating system

The main services provided by the kernel of the operating system are memory management, process

scheduling, interfacing to the hardware, timing services, special routines to interface to the kernel

called system calls and communication with external devices and networks. They are all discussed

briefly in this section.

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

2.2.1 Multitasking

A Task is a semi-independent program with a dedicated purpose. Each executing program is a

task under control of the operating system. If an operating system can execute multiple tasks in

this manner it is said to be multitasking. The kernel is the core component within an operating

system. Operating systems such as Linux employ kernels that allow users access to the

computer seemingly simultaneously. Multiple users can execute multiple programs apparently

concurrently.

The use of a multitasking operating system can simplify the design of what would otherwise be

a complex software application:

• The multitasking and inter-task communications features of the operating system allow

the complex application to be partitioned into a set of smaller and more manageable

tasks.

• The partitioning can result in easier software testing, work breakdown within teams, and

code reuse.

• Complex timing and sequencing details can be removed from the application code and

become the responsibility of the operating system.

A conventional processor can only execute a single task at a time - but by rapidly switching

between tasks a multitasking operating system can make it appear as if each task is executing

concurrently.

2.2.2 Process Management

Process management is the collection of activities of planning and monitoring the

performance of a process. A process is a program or set of instructions that take some amount

of processor time to complete a task. The task could be anything from just updating the

memory or some complex thing like monitoring a network port. A process needs certain

resources, including CPU time, memory, files, and I/O devices, to accomplish its task. The

operating system is responsible for the following activities in connection with process

management:

• process creation and deletion.

• process suspension and resumption.

• provision of mechanisms for:

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

 process synchronization

 process communication

 Deadlock handling

• process sharing (scheduling),

• process synchronization mechanisms, and

• process protection and security.

2.2.3 Scheduling

On most multitasking systems, only one process can truly be active at a time - the system must

therefore share its time between the executions of many processes. This sharing is called

scheduling.

Different methods of scheduling are appropriate for different kinds of execution. A queue is

one form of scheduling in which each program waits its turn and is executed serially. This is

not very useful for handling multitasking, but it is necessary for scheduling devices which

cannot be shared by nature. An example of the latter is the printer. Each print job has to be

completed before the next one can begin; otherwise all the print jobs would be mixed up and

interleaved resulting in nonsense.

There are many types of scheduling algorithms which are given below and the detailed

description for them are given more precisely in chapter 8 Process Scheduling

• First-In-First-Out Scheduling (FIFO)

• Last-In-First-Out (LIFO)

• Real-Time Scheduler also called RT scheduler

• Round Robin Scheduler etc ….

To choose an algorithm for scheduling tasks we have to understand what it is we are trying to

achieve, i.e., what are the criteria for scheduling. The efficiency we need and what factors can

be compromised for improving other factors like improving throughput with the expense of

making the scheduler unfair or non real time behaviour to others. Many other factors come

into picture and these factors depend on actually the purpose of the scheduler, which could be

any one or more of the following

• to distribute the processor time fairly among the processes.

• to make one or more processor real-time, i.e., they have processor time when ever they

needed without any competition from other processes.

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

Scheduling hierarchy

Complex scheduling algorithms distinguish between short-term and long-term scheduling.

This helps to deal with tasks which fall into two kinds: those which are active continuously

and must therefore be serviced regularly, and those which sleep for long periods.

For example, in UNIX the long term scheduler moves processes which have been sleeping for

more than a certain time out of memory and onto disk, to make space for those which are

active. Sleeping jobs are moved back into memory only when they wake up (for whatever

reason). This is called swapping.

The most complex systems have several levels of scheduling and exercise different scheduling

polices for processes with different priorities. Jobs can even move from level to level if the

circumstances change.

2.2.4 Context Switching

Context switching occurs when a multitasking operating system stops running one process and

starts running another. Many operating systems implement concurrency by maintaining

separate environments or "contexts" for each process. The amount of separation between

processes, and the amount of information in a context, depends on the operating system but

generally the OS should prevent processes interfering with each other, e.g. by modifying each

other's memory.

A context switch can be as simple as changing the value of the program counter and stack

pointer or it might involve resetting the MMU to make a different set of memory pages

available.

In order to present the user with an impression of parallel execution, and to allow processes to

respond quickly to external events, many systems will context switch tens or hundreds of

times per second.

2.3 Memory Management

Memory management is one of the most fundamental areas of computer programming. In many

scripting languages, knowing the abilities and limitations of your memory manager is critical for

effective programming. In most systems languages like C and C++ [17], you have to do

memory management. Back in the days of assembly language programming, memory

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

management was not a huge concern. You basically had run of the whole system. Whatever

memory the system had, so did you. You do not even have to worry about figuring out how

much memory it had, since every computer had the same amount. If the requirements were

pretty static, we just choose a memory range to use and used it.

However, even in such a simple computer there are still some issues, i.e. if we do not know how

much memory is needed by each part of the program [6], if we have limited space and varying

memory needs then we need some way to meet these requirements which can be:

• Determine if we have enough memory to process data

• Get a section of memory from the available memory

• Return a section of memory back to the pool of available memory so it can be used by

other parts of the program or other programs

The libraries that implement these requirements are called allocators, because they are

responsible for allocating and deallocating memory. The more dynamic a program is, the more

memory management becomes an issue, and the more important your choice of memory

allocator becomes.

2.4 System Calls

In any modern operating system, there is a basic dichotomy between code which runs in

privileged mode (kernel space) and code which executes in user space. Kernel code has

complete control over the machine; it can access any of the machine's resources, such as

memory, network adapters, and disk drives. User space code has limited access to system

resources. In order to read from a disk drive or write to the network, for example, user code has

to ask the kernel to perform the work on behalf of the user code. If the user code tries to carry

out an operation which it does not have permission to do, the microprocessor notifies the kernel,

which normally kills the user space process.

This split between kernel and user code allows computers to juggle many independent tasks.

The kernel allows a user space program to run for a while, and then stops it to let other tasks

run. Additionally, the kernel can instruct the microprocessor to prevent one program from

interfering with resources being used by another, thus preventing tasks from harming one

another. Whenever user space programs need to access system resources they don't own, they

have to ask the kernel for help. File and network access, creating and destroying other

processes, and allocating additional memory are all areas where the kernel becomes involved.

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

By being involved in these types of operations, the kernel retains complete control over the

system. One task can be refused access to a file when another is accessing it, memory allocation

requests can be denied if the system is running low on resources, and users can be prevented

from killing each other's processes.

System calls allow user space programs to request services from the kernel. In C, system calls

look just like normal function calls, but they have a very different implementation. Rather then

simply transferring control of the program, system calls switch the system to kernel mode. Once

the kernel has control, it performs the requested service, returns the system to user mode, and

then transfers control back to the originating process.

Every Linux program can be thought of as a very simple loop:

1. Compute something

2. Make a system call

3. Go to step 1

System calls can be just thought of ordinary function calls for an application programmer but

they are very special function calls if you look under the hood, so for a newbie or for a pure

application programmer it would be quite confusing to differentiate between the normal

function call and a system call. There is a basic dichotomy between code which runs in

privileged mode (kernel mode) and code which executes in user space. In Linux there are two

categories of functions, based on how they are implemented

• A library function is an ordinary function that resides in a library external to your

program. Most of the library functions are in the standard C library, libc. For example,

getopt_long and mkstemp are functions provided in the C library.

• A call to a library function is just like any other function call. The arguments are placed

in processor registers or onto the stack, and execution is transferred to the start of the

function's code, which typically resides in a loaded shared library.

• When a program makes a system call, the arguments are packaged up and handed to the

kernel, which takes over execution of the program until the call completes. A system call

isn't an ordinary function call, and a special procedure is required to transfer control to

the kernel. However, the GNU C library (the implementation of the standard C library

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

provided with GNU/Linux systems) wraps Linux system calls with functions so that you

can call them easily as if you call an ordinary function within the program. Low-level

I/O functions such as open and read are examples of system calls on Linux [3].

• The set of Linux system calls forms the most basic interface between programs and the

Linux kernel. Each call presents a basic operation or capability.

• Some system calls are very powerful and can exert great influence on the system. For

instance, some system calls enable you to shut down the Linux system or to allocate

system resources and prevent other users from accessing them. These calls have the

restriction that only processes running with superuser privilege (programs run by the

root account) can invoke them. These calls fail if invoked by a non-superuser process

[7].

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

3 COFFEE RISC Core TM

This chapter gives introduction to the RISC Core hardware specifications. It is important to know

the processor before dwelling deeply into further topics. As the OS acts as the abstract layer for the

hardware, from OS designer point of view this chapter is found very useful. All the information in

this chapter can be found in the official web page of the processor. [1]

COFFEE RISC Core TM is a Reduced Instruction Set Computer (RISC) core developed in the

Institute of Digital and Computer Systems at Tampere University of Technology, Finland. Its

features are summarised below:

 single six-stage pipeline

 Harvard architecture

 clean RISC style instruction et with 67 instructions

 two instruction encoding:16 bit and 32 bit

 conditional execution of instructions

 operating system support: privileged operating mode, runtime configurable memory address

checks and internal timers.

 two register banks, 32 registers in each bank

 memory mapped configuration block for easy access by software. Can be extended and

remapped anywhere in the address space.

 internal interrupt controller, 12 external interrupts supported with configurable priorities

 four coprocessors can be connected

3.1 Operating Modes

16 bit mode and 32 bit decoding modes
16 bit mode refers to length of the instruction word. When in this mode, core expects to get

instruction words encoded in 16 bits. Mode can be switched on the fly using swm –instruction. Of

course when running actual code, the encoding really has to change after swm –instruction (See

document instruction execution cycle times).

Limitations in 16 bit mode

• only 8 registers per set available: registers 24...31 mapped as registers 0...7

• Conditional execution is not available

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

• Only one condition register(CR0) in use

• Immediate constants are shorter, see instruction specifications.

• Instructions lui, lli, exbfi and cop not available (available as pseudo –operations if supported

by assembler).

• 2nd source register and destination register shared.

Super user mode

The core can operate in super user –mode or user –mode. In super user –mode, core can access the

whole memory space and both register banks. In user –mode, access to protected memory areas

(software configurable) is denied and only 1st register bank is accessible. It’s possible to switch

from super user -mode to user –mode but not vice versa, except using scall –instruction which

transfers execution to system code. System code entry address must be configured in startup code.

Interrupt service routines can be run in both modes. This can also be configured by startup code.

Core boots in super user –mode, which makes it possible to do the necessary configurations before

starting application in user –mode.

Resetting the processor

After powering up the core, rst_x pin should be pulsed low (clock has to be stable) to set the core in

correct state. If boot address selection is enabled (boot_sel –pin pulled high), boot address should be

driven to data bus simultaneously with rst_x –signal. If boot address selection is disabled, core will

boot at address 0x00000000h. Normal operation will start two clock cycles after the rising edge of

the rst_x –signal.

Defaults after reset and boot procedure

Core will boot in super user and 32 bit –modes. Interrupts are disabled. A typical boot procedure

would be to execute assembly written boot code which sets all CCB registers to suitable values and

switches to user –mode by executing retu –instruction. See instruction specifications.

About configuring the core

Several features of the core can be configured via the core configuration block (CCB) which is a

memory mapped register bank. When writing a new value to a configuration register, the new value

will be valid when the instruction accessing CCB is in stage 5 of the pipeline. It follows that, if

some configurations affect the execution of some instructions, or some configurations should be

valid, when executing certain instructions, one has to make sure that there is enough instructions

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

between the ones accessing CCB and dependent instructions. These can be nop – instructions or

other instructions which do not depend on values of the configuration registers. Table below shows

few examples of situations where it is essential to have few instructions between a CCB write and

an instruction depending on the configuration made. If you’re not sure about the number of ‘guard’

–instructions, use four.

Table 1 Configuring the Core

3.2 Registers

COFFEE has two different register sets. The first set (SET 1) is intended to be used by application

programs. The second set of registers (SET 2) is for privileged software which could be an

operating system or similar. SET 2 is protected from application program. Privileged software can

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

access both sets. There’s a total of 32 registers in both sets including general purpose registers

(GPRs) and special purpose registers (SPRs).

In addition COFFEE has eight condition registers (CRs) which are used with conditional branches

or when executing instructions conditionally. These are visible to application software as well as to

privileged software. Besides the register bank described here, COFFEE has another register bank,

CCB (core control block), which is mapped to memory (accessed using ld and st –instructions).

CCB is for controlling the processor operation and as such should be configured by boot code. CCB

also contains few status registers.

The usage of general purpose registers is not restricted by hardware in any way. In any

case, good programming means fixing some registers for a certain purpose.

Table 2 Core Registers

SET 1 GPRs
SET 1 has 32 identical general purpose registers R0...R31 with one exception: R31 is used as a link

register(LR) with some instructions. The programmer is free to use R31 for any other purpose as

long as it’s special behaviour is taken into account. All general purpose registers (and the link

register) are 32 bits wide.

SET 2 GPRs
SET 2 has 30 identical general purpose registers PR0...PR28 and PR31 with one exception: PR31 is

used as a link register by some instructions. The programmer is free to use PR31 for any other

purpose as long as it’s special behaviour is taken into account. All general purpose registers (and

the link register) are 32 bits wide.

SET 2 SPRs

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

There’s two special purpose registers in SET 2: PSR and SPSR. PSR is eight bits wide. When

reading data from PSR the ‘non existent’ bits are read as zeros. Writing to a read only register(PSR)

is ignored.

PSR (register index 29)

Processor Status Register is a read only register and contains the flags explained below. Bits 7

downto 5 are reserved for future extensions.

IE = 1: Interrupts enabled, IE = 0: Interrupts disabled.

IL = 1: Instruction word length is 32 bits, IL = 0: Instruction word length is 16 bits.

RSWR bit selects which register set to use as target:

RSWR = 1: SET2, super users set; RSWR = 0: SET1, users set.

RSRD bit selects which register set to use as source:

RSRD = 1: SET2, super users set; RSRD = 0: SET1, users set.

UM indicates which user mode the processor is in:

UM = 0: super user mode, UM = 1 : user mode.

RESERVED: Read as zeros.

SPSR (register index 30)

SPRS is used to save PSR flags when changing user mode by executing scall – instruction. It can be

also used to set mode flags for the user: IE and IL flags are copied from SPSR to PSR when retu –

instruction is executed. Note that bits 31 downto 5 are writable but only bits 7 downto 0 are saved

in case of scall.

CRs
There’s eight three bit wide condition registers C0...C7 (visible both to application software and

privileged software). Condition registers are used with conditional branches or when executing

instructions conditionally. Each register contains three flags: Z (Zero), N (Negative) and C (Carry).

When executing compare instructions or some arithmetic instructions these three flags are

calculated and saved to the selected CR (arithmetic instructions always save flags to C0). When

conditionally branching or executing, flags from the selected CR are compared to match a certain

condition given by the programmer.

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

CCB registers
Note, that ‘byte’ addresses (that is consecutive addresses) are used in table below. 256 consecutive

addresses are reserved for core configuration block. Addresses beyond CCB_BASE + ffh can be

configured to point to an external peripheral configuration block (PCB), if present.

Registers which are shorter than 32 bits:

• LSB of a GPR corresponds to LSB of the short register in CCB.

• Unused bits read as zeros.

• For code compatibility with future versions, you should write unused bits as you would if

there were more bits (interrupt masking, for example).

Table 3 Core control block Registers (CCB)

Offset mnemonic Width description/usage notes

00h CCB_BASE 32 Start address of this relocatable
configuration block (address of the
CCB_BASE itself)

Has to be aligned
to 256B boundary!
That is, bits 7
downto 0 must be
zeros

01h CCB_END 32 End address of configuration
register space.

02h COP0_INT_VEC 32 Co-processor 0 interrupt service
routine start address.

03h COP1_INT_VEC 32 Co-processor 1 interrupt service
routine start address.

04h COP2_INT_VEC 32 Co-processor 2 interrupt service
routine start address.

05h COP3_INT_VEC 32 Co-processor 3 interrupt service
routine start address.

06h EXT_INT0_VEC 32 External interrupt 0 service routine
base address.

07h EXT_INT1_VEC 32 External interrupt 1 service routine
base address.

08h EXT_INT2_VEC 32 External interrupt 2 service routine
base address.

09h EXT_INT3_VEC 32 External interrupt 3 service routine
base address.

0ah EXT_INT4_VEC 32 External interrupt 4 service routine
base address.

0bh EXT_INT5_VEC 32 External interrupt 5 service routine
base address.

See chapter Kernel
Entry and Exit -
interrupts

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

0ch EXT_INT6_VEC 32 External interrupt 6 service routine
base address.

See chapter Kernel
Entry and Exit -
interrupts

0dh EXT_INT7_VEC 32 External interrupt 7 service routine
base address.

See chapter Kernel
Entry and Exit -
interrupts

0eh INT_MODE_IL 12

Instruction decoding mode flags
for interrupt routines (PSR:IL is set
accordingly when entering
routine).

0fh INT_MODE_UM 12

User mode flags for interrupt
routines(PSR:UM, RSRD, RSRW
are set accordingly when entering
routine).

10h INT_MASK 12

Register for masking external and
cop interrupts individually. A low
bit (‘0’) means blocking an
interrupt source, a high bit enables
an interrupt.

Bit associations:
See note 3 below.

See interrupts and
processor status
register.

11h INT_SERV 12 Interrupt service status bits.

12h INT_PEND 12 Pending interrupt requests.

See chapter Kernel
Entry and Exit -
interrupts

13h EXT_INT_PRI 32

Interrupt priorites:
Bits 31 downto 28 : INT 7 priority
Bits 27 downto 24 : INT 6 priority
...
Bits 7 downto 4 : INT 1 priority
Bits 3 downto 0 : INT 0 priority

14h COP_INT_PRI 16

Bits 15 downto 12 : COP3 priority
Bits 11 downto 8 : COP2 priority
Bits 7 downto 4 : COP1 priority
Bits 3 downto 0 : COP0 priority

0 – highest priority
15 – lowest
priority
Priorities for
external interrupts
can only be set if
external handler is
not used.

15h EXCEPTION_CS 8 Exception cause code.

16h EXCEPTION_PC 32 Address of the instruction which
caused the exception.

17h EXCEPTION_PSR 8
Copy of the processor status flags
which were used when decoding
the violating instruction.

See chapter Kernel
Entry and Exit -
exceptions.

18h DMEM_BOUND_
LO 32 start of protected/allowed address

space for data memory

19h DMEM_BOUND_
HI 32 end of protected/allowed address

space for data memory

1ah IMEM_BOUND_L
O 32 start of protected/allowed address

space for instruction memory

1bh IMEM_BOUND_H
I 32 end of protected/allowed address

space for instruction memory

See user modes:
super user. See
also register
MEM_PCONF.
Note that bounds
are included in the
address space.

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

1ch MEM_PCONF 32 Defines whether the space between
addresses set by
XMEM_BOUND_LO and
XMEM_BOUND_HI is protected
from user or allowed for user.
Bit 0 controls instruction memory
protection, bit 1 data memory
protection. Bits 31 downto 2 are
reserved.
Bit high => area is protected Bit
low => area is allowed (and the
rest is protected)

See note 4.

1dh SYSTEM_ADDR 32 System code entry address. (used
by scall)

1eh EXCEP_ADDR 32 Exception handler entry address. See chapter Kernel
Entry and Exit -
exceptions

1fh WAIT_STATES 12 Number of wait cycles for
coprocessor and memory accesses.
Can be set between 0 and 15

See core interface
description.

 bits 11 downto 8: coprocessor
access wait cycles. bits 7 downto 4
: data memory and PCB access
wait cycles. bits 3 downto 0:
instruction

 memory access wait cycles.
20h CREG_I_INDX 20 Specifying register index for

coprocessor instruction word.
bits 19 downto 15: Coprocessor
number 3 register index used by
cop –instruction bits 14 downto 10:
Coprocessor number 2 register
index used by cop –instruction bits
9 downto 5: Coprocessor number 1
register index used by cop –
instruction bits 4 downto 0:
Coprocessor number 0 register
index used by cop –instruction

21h TMR0_CNT 32 Current timer value of timer 0
22h TMR0_MAX_CNT 32 Maximum value of timer 0
23h TMR1_CNT 32 Current timer value of timer 1
24h TMR1_MAX_CNT 32 Maximum value of timer 1

See chapter about
timers.

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

2 Address range ([CCB_BASE] + 100h) to [CCB_END] is used to access an external configuration

block directly. This makes it possible to connect peripherals directly to data cache bus instead of

system bus.
3 Bit index and interrupt source associations:

bit source bit source bit source
0 coprocessor 0 int (exception) 4 ext int 0 8 ext int 4
1 coprocessor 1 int (exception) 5 ext int 1 9 ext int 5
2 coprocessor 2 int (exception) 6 ext int 2 10 ext int 6
3 coprocessor 3 int (exception) 7 ext int 3 11 ext int 7

4 Memory protection can be dynamically configured which is convenient in multitasking system.

Most secure way is to set the limits always when switching task and to allow one task to access only

address space reserved for it(data and instruction memory). If different tasks share global

data(dangerous!) address spaces can overlap. In most cases communication between tasks should

follow schemes offered by operating system. In simple systems only vital part of the the memory

might be protected and the rest of the memory is ‘free’ to everyone. In both cases it is

recommended that CCB is mapped to protected area!

Register values after reset

PSR start value is 0000 1110b. SPSR is set to 0000 0009h Other registers in RF and CR

are set to zero upon reset.

RESERVED IE IL RSWR RSRD UM
7...5 4 3 2 1 0

Table 4 CCB (internal) register values after reset

25h TMR_CONF 32 Common configuration register for
timers 0 and 1
bits 31 downto 16 : timer 1
configuration bits. bits 15 downto 0
: timer 0
configuration bits.

26h COP_IF_MODE 8 Coprocessor interface
configuration.

To be implemented
later

RESERVED FOR FUTURE EXTENSIONS 27...f
fh

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

mnemonic value after
reset

Notes

CCB_BASE 0001 0000h 64KB offset from the ‘start’. Depending
on the actual memory implementation,
data and instruction cache may or may not
point to the same physical memory.

CCB_END 0001 00ffh Must be set if an external configuration
block is present.

COP0_INT_VEC 0000 0000h
COP1_INT_VEC 0000 0000h
COP2_INT_VEC 0000 0000h
COP3_INT_VEC 0000 0000h
EXT_INT0_VEC 0000 0000h
EXT_INT1_VEC 0000 0000h
EXT_INT2_VEC 0000 0000h
EXT_INT3_VEC 0000 0000h
EXT_INT4_VEC 0000 0000h
EXT_INT5_VEC 0000 0000h
EXT_INT6_VEC 0000 0000h
EXT_INT7_VEC 0000 0000h
INT_MODE_IL fffh 32 bit mode for all routines
INT_MODE_UM 000h Super user mode for all routines
INT_MASK fffh All interrupts disabled
EXT_INT_PRI 0000 0000h
COP_INT_PRI 0000h

INT_SERV 000h
INT_PEND 000h
EXCEPTION_CS 00h
EXCEPTINON_PC 0000 0000h
EXCEPTION_PSR 00h
DMEM_BOUND_LO 0000 0000h
DMEM_BOUND_HI ffff ffffh

All the address space reserved for super
user. Cannot run in user mode before

IMEM_BOUND_LO 0000 0000h
IMEM_BOUND_HI ffff ffffh
MEM_PCONF 0000 0003h

configuring these register appropriately.

SYSTEM_ADDR 00000000h
EXCEP_ADDR 00000000h
WAIT_STATES fffh Assuming the slowest memories possible.

Sixteen clock cycles per memory and cop
access. (1 basic cycle + 15 wait cycles)

CREG_INDX_I 0 0000h cop –instruction accesses register index 0
of the coprocessor.

TMR0_CNT 00000000h
TMR0_MAX_CNT 00000000h
TMR1_CNT 00000000h
TMR1_MAX_CNT 00000000h

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

TMR_CONF 00000000h
COP_IF_MODE 00000000h

3.3 Overview of the Pipeline

Figure 2: Pipeline Stages inside the Core[1]

3.4 Interface of the Core

[1] Figure 3 shows an example of interfacing the core. This is not the only possible way to connect

to core. Optional peripherals are drawn with dashed line. External interrupt handler, boot agent,

PCB (peripheral control block) and the coprocessors are optional. Also the use of bus_req and

bus_ack signals is optional. bus_req and bus_ack –signals allow sharing the data bus. Boot agent

can be used if the boot address has to be determined externally. PCB is a user defined block to

interface peripheral devices directly. It can have, for example, configuration registers mapped to

some of the memory addresses. PCB address space is defined by software. Unused inputs should be

driven to a state defined in port specification.

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

Figure 3: Interface of the Core[1]

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

4 Process Management

We more often use the term process in Linux documentations instead of task, both can be used

interchangeably but the same convention of using the term process as in Linux is followed even

here. A process is a fundamental concept to any multiprogramming operating system and a process

is defined as an instance of program execution. [3] [19]

The process manager implements the process abstraction. It covers the following areas:

• Scheduling of processes on the CPU(s).

• Synchronization mechanisms for processes.

• Responsible for dealing with deadlocks among processes.

• Partially responsible for protection and security.

Figure 4 Process Manager Overview [7]

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

4.1 Process Structure

This is the point where the author started. All kernel newbie who would like to build the kernel

from scratch could start from writing the process structure and adding functions to manipulate the

members of the structure. This point is very important as it took me a long time to the point where

to start as there is a lot of dependency of one function on the other [3], so this point would be

suggested by the author. Note that the functions which operate on the variables like next_task,

prev_task. next_run, prev_run etc inside a structure which are independent of other functions except

the functions to which they are passed as parameters (pass by reference) i.e., the operation on these

variables are clean and readable even to a newbie. One can start understanding code from here as it

is just a matter to understand how complex algorithms are operated on these variables. For the

kernel to manipulate with the processes, it should have an clear idea of what it is doing, what it did,

what resources it owns, how many more resources it is requesting, the memory it is using and

everything related each process. All these information is stored in a structure named task_struct

which is the process structure or most often called process descriptor. It is like a report card of a

student (task) which has all the information that the teacher (kernel) would need to know to take

further actions on that student (task). Not only does this structure have many fields inside it but also

it has some fields that are pointers that point to some similar structures that in turn points to some

other structures. We can imagine this as a group of students who has a report card (say its number

be 1203) and one field in this report card would point to the report card number (say 4112) of the

student who got the next immediate rank. Similarly that report card could have a pointer that also

points to the report card number of the student who got the previous immediate rank (should be to

the number 1203 if no ranks are repeated.

Task_struct is like a report card to the kernel which sees into this report card and could figure out

what each of the task was doing, how much time it was using the resources of the system and

everything possible related to that task. So if the kernel just deletes a task_struct of one task then it

will no further be able to know what it did, doing and going to do and hence will not be able to

provide it with any resources and is equivalent to deleting the task from the kernel’s knowledge.

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

Figure 5 describes the Linux process descriptor schematically.

The task_struct field of the port is given below:

struct task_struct{

 int state;

 int pid;

 int priority;

 struct task_struct *prev_task,*next_task;

 struct task_struct *prev_run, *next_run;

 long counter;

 unsigned long timeout;

 struct pt_regs *regs;

 struct mm_struct *mm;

 struct task_struct *p_opptr, *p_pptr, *p_cptr, *p_ysptr, *p_osptr;

 struct wait_queue *wait_chldexit; /* for wait4() */

 unsigned long policy,rt_priority;

 int exit_code, exit_signal;

 unsigned long signal;

 /* signal handlers */

 struct signal_struct *sig;

 struct timer_list timer;

 int syscall_called_timer; // If equals to 20 then delete this task

 // from runqueue

};

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

Figure 5 Structure of the Process descriptor

4.2 Process States [3]

A Process can be in any one of the six states that will be described in this section. As its name

implies, the state field of the process descriptor describes what is currently happening to the

process. It consists of an array of flags, each of which describes a possible process state.[3] The

following are the possible process states:

TASK_RUNNING

The process is either executing on the CPU or waiting in some queue to get a chance to be executed.

 state
 flags
..........
counter
priority
next_task
prev_task
next_run
prev_run
……….
p_optr
p_pptr
……..

 mm
sig_lock
 sig

fs_struct

reg_struct

signal_struct

mm_struct
pointers
to other
task_struct

pointers
 to
mm_struct

pointers
 to
sig_struct

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

TASK_INTERRUPTIBLE

The process is suspended (sleeping) until some condition becomes true. Raising a hardware

interrupt, releasing a system resource the process is waiting for, or delivering a signal are examples

of conditions that might wake up the process, that is, put its state back to TASK_RUNNING. This

state is not yet used in this port.

TASK_UNINTERRUPTIBLE

Like the previous state, except that delivering a signal to the sleeping process leaves its state

unchanged. This process state is seldom used. It is valuable, however, under certain specific

conditions in which a process must wait until a given event occurs without being interrupted. For

instance, this state may be used when a process opens a device file and the corresponding device

driver starts probing for a corresponding hardware device. The device driver must not be interrupted

until the probing is complete, or the hardware device could be left in an unpredictable state. This

state Is not yet used in this port.

TASK_STOPPED

Process execution has been stopped: the process enters this state after receiving a signal that means

to stop the execution of the specified task. When a process is being monitored by another (such as

when a debugger executes a ptrace() system call to monitor a test program), any signal may put the

process in the TASK_STOPPED state.

TASK_ZOMBIE

Process execution is terminated, but the parent process has not yet issued a wait()- like system call

(wait(), wait3(), wait4(), or waitpid()) to return information about the dead process. Before the

wait()-like call is issued, the kernel cannot discard the data contained in the dead process descriptor

because the parent. This state is yet not being used int his port.

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

Figure 6: State diagram showing all the possible state transitions. [6]

4.3 Process Identification PID

All the Processes are given a unique Identification using PID field in their task_struct. When a

process is created its PID is assigned a value of incremented value of “Global_Pid” which is an

unsigned integer. It can be seen that Global_Pid would overflow after thousands of processes are

forked/cloned/created and it is assumed that this will happen after a very long time at least in the

embedded OS.

4.4 The Task Array

Processes are dynamic entities whose lifetimes in the system range from a few milliseconds to

months or even some years but it is note worthy that some of the parameters in the kernel overflow

after some long time like the variable JIFFIES which has a count of number of time ticks from last

system boot. Thus, the kernel must be able to handle many processes at the same time. The kernel

could handle NR_TASKS (defined in /kernel/sched.h file at the time of this writing) processes

whose value should be kept appropriate depending on the memory usage of each task and the

processor speed. At the time of writing this document the processor speed was about 50 MHz and

the static RAM was 16MB, so NR_TASKS was chosen to be 10 (very optimum), depending on the

application and use, developers are encouraged to change its value if they knew the effects of

exit

sleep

sleep

wakeup

Clock Interrupt

Schedule

 Zombie
TASK_ZOMBIE

 Running
TASK_RUNNING

 Stopped
TASK_STOPPED

Ready to run
TASK_RUNNING

 Waiting
TASK_UNINTERRUPTIBLE Waiting

TASK_INTERRUPTIBLE

done

wakeup

wakeup

wait

Signal

exit

wait

Start

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

changing it. The kernel reserves a global static array of size NR_TASKS called task in its own

address space. The elements in the array are process descriptor pointers; a null pointer indicates that

a process descriptor hasn't been associated with the array entry.

4.5 The current macro

Current is a pointer that holds the address of the process descriptor that is currently scheduled to run

on the processor. The variable current is stored at a fixed memory inside the kernel data area and it

is more often necessary for the kernel to get the address of the process descriptor stored in the

current pointer, it is done using the macro “get_current (Rx)” which makes the address to be stored

in the specified register Rx. The assembly instruction will be just like the following.

 __asm__ (".macro get_current (reg)\n\t"
 "push r16\n\t"
 "ldra r16, current\n\t"
 "ld reg,r16,0\n\t"
 "pop r16\n\t"
 ".endm\n\t");

4.6 Linked Lists of the processes

As previously described in the teacher-student example, there are pointers in the process descriptors

which point to other process descriptor based on some criteria. Two of those criteria in Linux are

pointers pointing to the next/previous task on the run queue and pointers pointing to the

next/previous task on (say) wait_queue. When you look at the C-language declaration of the

task_struct structure, the descriptors may seem to turn in on themselves in a complicated recursive

manner. However, the concept is no more complicated than any list, which is a data structure

containing a pointer to the next instance of itself.

4.6.1. The double linked list of processes in the wait queue

Figure 7: Connected processes in the queue [3]

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

The descriptor of the task had to be pointed by at least tasks in runqueue or waitqueue or be its

parent/child/sibling or anyone so that the address of its descriptor is lost. If that happens then the

kernel will be unable to update its action and eventually it will not allow this task to do anything

cutting the access to the processor. So at an instance if the process has some thing left to do on the

processor then its descriptor will be pointed by a pointer in at least one descriptor of some other

process.

There is a macro in /kernel/sched.h which is as follows:

#define for_each_task(p) \

 for (p = &init_task ; (p = p->next_run) != &init_task ;)

This macro can be used to scan all the processes which are on the run queue; this is a bit different to

that on Linux, where a similar macro is used to scan all the processes on all queues i.e. all the

available processes on system. The change was made as the scan to all the available processes in the

system was not used for the limited functionality the port has at the time of this writing. The future

works will probably again use the macro that was used in Linux versions.

4.6.2. The double linked list of TASK_RUNNING processes

The double linked of the task_running processes points to the process descriptors whose STATE is

TASK_RUNNING and are waiting to get a chance to be executed on the processor. The process

descriptor contains the fields’ next_run and prev_run exactly for these purposes. The below figure

is shows the processes that are on the runqueue and the way they are pointing to each other. Note

that init_task (the process descriptor of an idle task) will be the head of all queues.

Figure 8: Connected processes in the run queue

The nr_running variable stores the total number of runnable processes. There are functions like

add_to_runqueue() which adds the process descriptor on the run queue which means that the last

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

process pointer will point its next_run to this process descriptor and the process’ prev_run will be

pointing to the process which was last in the queue before this process was added. The next_run of

the last process descriptor will always point to INIT_TASK and this will become a circular double

linked list. Similarly del_from_runqueue would remove the process from the run queue and adjust

its neighbouring process pointers such that removing the process will not break the queue flow,

move_last_runqueue() and move_first_runqueue(), are provided to move the process descriptor to

the last and front of the runqueue.

wake_up_process() will make a sleeping process again runnable, which in turn invokes

add_to_runqueue() which adds the awaken process again to the end of the runqueue incrementing

the nr_running variable. The functionality of the del_from_runqueue is exactly the reverse which

decrements nr_running after removing the process descriptor from the runqueue. Note that

del_from_runqueue() can delete the process descriptor from anywhere in the runqueue but the

add_to_runqueue() can add the process descriptor only to the end of the queue. Again the scheduler

is invoked it may change the sequence or they can be wontedly moved to the place the kernel wish

using the above mentioned macros.

4.7 Process Switching
In order to control the execution of processes, the kernel must be able to suspend the execution of

the process running on the CPU and resume the execution of some other process previously

suspended. This activity is called process switching, task switching, or context switching. The

following sections describe the elements of process switching in Linux:

• Hardware context

• Hardware support

• Linux code

• Saving the Stack Pointers

4.7.1 Hardware Context

While each process can have its own address space, all processes have to share the CPU registers.

So before resuming the execution of a process, the kernel must ensure that each such register is

loaded with the value it had when the process was suspended. The set of data that must be loaded

into the registers before the process resumes its execution on the CPU is called the hardware

context. The hardware context is a subset of the process execution context, which includes all

information needed for the process execution.

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

Here in this section detailed description of how this hardware context is carried out is given.

It is evident that in Linux context switch can only occur after the system call i.e. scheduler is called

only in System Call handler and not anywhere. This is because of the fact that system call is a sort

of least priority interface to the kernel for the processes, which means that all the interrupts and

exceptions for this process (if there were any) should have been already handled before coming

back to scall(system call) handler.

To get a better view of why this is done let us consider a situation where current is the process that

is now under execution and made a system call. There will be a switch to kernel routines to handle

to request and then the requested system call routines are now executing. At this stage a timer

interrupt arrives and because interrupts have more priority then scall in COFFEETM RISC core the

processor immediately starts executing the interrupts handler. More details on how interrupt handler

is started and the hardware support for them is given in chapter 5. If the interrupt handler has the

capability of calling the scheduler and the scheduler makes another process as current process to be

next run on processor, then after servicing the interrupt the control will return to the system call

handler which will be giving services to the new current process that was the result of calling

scheduler in interrupt handling routines which is absurd. The below figure illustrates the above

mentioned scenario.

Figure 9: Effects of making the interrupt or exception handler capable of calling scheduler

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

All the contents of the User Mode registers along with some Superuser Mode registers (stack and

frame pointer, PSR, SPSR and control registers) are saved only in scall handler which is the only

situation where the process has no guarantee that it will be resumed. Unlike in the case of interrupts

and exceptions, where in interrupts the execution of the process returns to the same process

(Guaranteed) and after the exception handling the process may never resume, in both cases there is

no need to save the user registers. The user registers are saved using the macro

SAVE_USR_PT_REGS which is a C macro in the file /kernel/entry.h.

In the figure illustrated below it is seen how a copy of all registers of one process is taken into the

struct pt_regs, which is sufficient information for the processor to resume the process when selected

by the scheduler from the same instance where it was suspended. The figure has been divided into

two parts to illustrate that a time epoch has passed as we passed from one side to another. Process 1

made a system call that will make processor to run kernel routines, where the first thing to do is to

save the user registers into the kernel data structures as there is no guarantee that this process be

resumed, then system call validity is made and the appropriate system call is executed. After the

system call is done then the scall handler checks if the process needs rescheduling make another

process as current process. When the scall handler returns it resumes all the current process’ saved

registers into the User Register Bank (set 1 registers) along with some registers in the Super User

Set that are necessary for the processor and the kernel to know about the stack and processor status

when this current process was previously suspended. The prev local variable refers to the process

descriptor of the process being switched out and next refers to the one being switched in to replace

it. We can thus define process switching as the activity consisting of saving the hardware context of

prev and replacing it with the hardware context of next. Since process switches occur quite often, it

is important to minimize the time spent in saving and loading hardware contexts.

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

Figure 10 Saving and Restoring User registers.

4.7.2 Saving and Restoring the SP and FP

The kernel and each of the processes have their own space in the memory. When a process request a

service from the kernel, the first thing is that the kernel checks for the system call validity and then

servicing is done in the kernel space. This is done by taking a backup of the FP (register 28) and SP

Scall

Process 1 = prev
task->pt_regs

Processor Registers

Context Switch
Process1 to Process 2

Process 2 = next
task->pt_regs

 Kernel

 Scall Handler

Process 2Process 1

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

(register 29) and replacing those registers with the kernel FP and kernel SP which are stored in the

variable KERNEL_SP and KERNEL_FP. The below figure illustrates how the two registers are

used as Stack Pointer and Frame Pointer by the compiler and because the kernel is partly written in

C so the kernel follows the compiler conventions.

Even though the figure is a bit confusing it is quite useful to explain the operation of saving and

restoring address space of kernel and processes. When the processor restarts first the kernel runs in

its address space in the area darkened in the memory. Once the kernel did all initializing stuff it

dumps the values of FP and SP into KERNEL_FP and KERNEL_SP and then puts the value of FP

and SP of the current process from struct pt_regs and restores them in the respective registers (r28

and r29). When this process is interrupted then these two registers along with some other registers

that the kernel believes will get corrupted back into the pt_regs struct.

Figure 11 Illustrating how stack space are restore for each process and kernel

Data Memory

 Kernel

KERNEL FP

KERNEL SP

 Process 1

 Process 2

SP1

FP1

SP2

FP2

SP3

FP3

SP4

FP4

Register 28 (Set 2)
 Frame Pointer
 FP

Register 29(Set 2)
 Stack Pointer
 SP

Backup in
mm_struct
and pt_regs

 Process 3

Time

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

 1. current->syscall_called_timer = 0; //time units since syscall called
 2. servicing_syscall = 1; //switch from task to kernel is true
 3. asm ("disable_interrupts\n\t");
 4. SAVE_USR_PT_REGS
 5. SAVE_STACK_POINTER
 6. MOVE_INCOMING_ARGUMENTS //incoming arugments from set1 to set2

The above is a part of the code taken from the system_call(). Line 5 shows when the stack pointers

are saved which is a simple #define written in the file /kernel/entry.h at the time of this writing.

4.8 Creating Processes

Creating a process here in this version of the OS is a bit tedious. Every time a new task is to be

added to the processes list, then the file /kernel/main.c is to be changed a bit. Information of the task

number and the approximate amount of stack memory it needs is given so that the kernel reserves

this space for this. Because there is no concept of pages here and because of the absence of MMU in

COFFEE RISC Core TM processor dynamic memory is still not implemented. In future Core will

have a MMU and the port will then be modified to allow dynamic memory allocation. So the point

is that whenever a process is added the kernel should be given knowledge of the task’s static

memory requirements in the file /kernel/main.c. Also all the structures related to this new process

are build manually in this file as kernel is incapable of building this structures because of the only

reason that it can only provide static memory in runtime and structures in the processes own static

space is liable of corrupting then. Kernel depends a lot on these structures and cannot risk

corrupting them. All the System Calls related to creating a process like clone(), fork(), and vfork()

will be added in the future works.

Process 0

The ancestor of all processes, called process 0 or, for historical reasons, the swapper process or

mother process or idle task is in real a process that does nothing. But this process being doing

nothing is here utilized in many ways. It is the head for all the processes, head for all the queues and

the only process executing when no other process is on the run queue. This Idle

This ancestor process makes use of the following data structures:

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

• A process descriptor and a Kernel Mode stack stored in the init_task variable. The init_task

and init_stack macros yield the addresses of the process descriptor and the stack,

respectively. It uses the following structures

• init_ptregs

• init_task

• init_mm

• init_signals

The INIT_TASK macro uses the above mention data structures and is the process descriptor for the

init_task. This process descriptor is useful to get the address of any processor descriptor as it is

somehow linked to the init_task and one can propagate through all the processes starting from INIT.

A brief description of the init_task is described below.

Figure 12: 3-dimension illustration of init_task primary functionality.

It is already mentioned that init_task is the head of all the queues and lists in the kernel. It also has a

functionality of running its own idle process (does nothing but loops itself) when no other processes

have anything to do in the run queue. The main problem in this was that init_task runs inside the

kernel and is having super user privileges and cannot be interrupted. This problem was solved by

making the init_task pointing to the function idle_brain() which calls a dummy system call

sys_dummy_idle_brain() which does nothing but just enable need_resched = 1, so that at the end of

 Interrupted
Processes Queue

 init_task
Process Descriptor

1 2 3 …Runnable Processes

 Wait Queue n... ….. 3 2 1

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

the system call, scheduler is invoked to check if there are any changes in the queues that make

processes other than init_task RUNNABLE. The other way to say this is scheduler is forcibly

invoked by idle_task/init_task be calling a dummy system call which enables a variable which is

checked and the time of returning from the system call and a decision is made whether to call

scheduler, as it is important to invoke scheduler regularly when init_task/idle_brain() is running as

it does nothing productive.

4.9 Process Termination/Removal

This was the simplest thing that could be done to a process in this port. As there are no parent

processes for a process as fork(), clone() etc are not yet ported, there will be neither be any parent

nor any child for the current process which depend on the current process’ execution. So just by

making the state of the process as TASK_STOPPED and just deleting it from the run queue, all the

information regarding this process will be lost and the kernel have no track of it and so this process

can never be resumed. In the Linux, the scenario is totally different, when a process has to terminate

then the kernel has to take care of snatching all the resources the process own and also all the

memory it was using including the task structures had to be freed so that the memory used for those

structures will be again useful for other processes. But here in this Core the only resources at the

time of this writing were CPU (or better to say Processor) and data memory, and because no new

processes are created at runtime and also sufficient memory is already allocated to each process

before they start, no memory is recovered. But later versions would have the capability of freeing

the dynamic memory. A process is forcibly removed when it does not execute a system call for

some long time (adjusted to 2000 timer ticks then the process no more gets the processor time on

the assumption that calling no system call for that long time means no productive work is bein done

by that process or more specifically it is assumed that it got stuck in a loop) or when it creates an

exception.

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

5. MEMORY MANAGEMENT

Management of memory on this port is quite simple as there are no pages, no swapping of memory

and no automatic allocation of extra memory if the process needs more. First the memory model

which was considered is explained in this chapter.

5.1 Data Memory Model

The data memory is divided into parts so that each process has its own stack space. It is known that

the kernel also has its own stack space and its memory space should be protected from the user

applications (unprivileged software). The memory model

Figure 13: Data Memory Model

 Dynamic Allocation

0x0000

KERNEL_FP

KERNEL_SP

 Process 1 Stack Space

 Process 3 Stack Space

 Process 2 Stack Space

 Kernel Stack Space

0xFFFF
 global variables

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

5.2 Stack Memory

Each process has its own stack space and it is supposed to use the memory space allocated to it. All

the running processes are trusted not to point to the address space that is owned by some other

process. As these processes represent embedded applications, they are trusted not to corrupt any

other process data by pointing to their memory space. It is seen that the security is a bit

compromised but it is not an issue in the embedded environment, as all the applications are written

by knowing this limitation of the kernel. Ideas of implementing the fence registers are in mind, also

this writing are based on the very first version of the kernel. Later in the future works they will be

soon implemented, i.e. these security issues will be raised and the compromises will be removed.

The process structures (struct task_struct xyz) are stored in the stack where the global variables are

placed by the linker. This structure will consume only 116 bytes of memory and the structure that

stores all the register values (struct pt_regs pqr) consumes 144 bytes. Process structure has all the

information related to a process except that it doesn’t know the register values of the process, but a

pointer to a structure which holds the latest values of the registers or the registers that are linked to

the current process (like PSR, SPSR and conditional registers) hold in this structure. When the

current task relinquishes or sleeps then there is a context switch and the kernel saves all the registers

of the process so that it can be resumed again into this structure.

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

6 Kernel Entry and Exit

The kernel has some specific entry and exit points from where it comes into picture and has control

over the execution flow of the processes. These points are mentioned and explained deeply in this

chapter, along with the services provided and handled by the kernel.

Figure 14: illustrating Kernel Entry and Exit points. [11]

6.1 Interrupts

An Interrupt is defined as an event that alters the sequence of instructions executed on the

processor. Such events correspond to electrical signals generated by hardware circuits both inside

and outside of the CPU chip. [1]

Interrupts are often divided into synchronous and asynchronous interrupts:

• Synchronous interrupts are produced by the processor control unit while executing instructions

and are called synchronous because the control unit issues them only after terminating the execution

SCALL
exceptions

boot

Interrupts Device Dialogs Memory Faults

 Library Code

System Call Interface

KERNEL

 Devices

scheduler
trap/
interrupt
table

system
 call
 table

counters

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

of an instruction. The timer interrupt that generates the interrupt at the known times is an example

for synchronous interrupts.

• Asynchronous interrupts are generated by other hardware devices at arbitrary times with respect to

the processor clock signals.

COFFEE RISC CoreTM currently supports connecting eight external interrupt sources directly. If

coprocessors are not connected the four inputs reserved for coprocessor exception signalling can be

used as interrupt request lines giving possibility to connect twelve sources. An external interrupt

handler can be connected to expand the number of sources even further.

If internal interrupt handler is used, the priorities between sources can be set by software, with

external handler; priorities will be fixed according to table below. Note that priorities for

coprocessor exceptions/interrupts are always set by software. Internal exception handler has

synchronization circuitry allowing signals to be directly connected to the core. If an external

handler is used, synchronization is bypassed in order to reduce signalling latency. See interface

document. Status signals are provided to give feedback about the status of the latest interrupt

request. Interrupt sources can be masked individually and disabled or enabled all at once using di

and ei –instructions. All interrupts are vectored. The address of an interrupt service routine can be

the corresponding vector directly (see interrupt registers) or a combination of the vector and an

offset given externally.

Table 5, Interrupt priorities if external handler is used, 0 - highest.

Priority Name

coprocessor number 0 exception/interrupt
coprocessor number 1 exception/interrupt
coprocessor number 2 exception/interrupt software

controlled coprocessor number 3 exception/interrupt
15 external interrupt 0
15 external interrupt 1
15 external interrupt 2
15 external interrupt 3
15 external interrupt 4
15 external interrupt 5
15 external interrupt 6
15 external interrupt 7

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

6.1.1 Interrupt interface modes

Two interfacing modes are supported: external handler and internal handler The mode is selected

by EXT_HANDLER –signal. A summary is given in the table below. Note that an external handler

usually allows priorities between sources to be set quite freely. In this case an external handler sees

a fixed priority between the lines it is driving. The user may see whatever configuration.

Table 6, Interrupt interface modes

mode/ request signal interrupt vector calculation priorities
EXT_HANDLER state timing
internal handler /
LOW

asynchronous BASE address directly
1

set by software (see
configuration
registers)

external handler /
HIGH

synchronous BASE(31 downto 12) &
OFFSET & “0000” 2

fixed between lines
(usually
configurable via
external handler)

1 BASE address is set by software. See CCB configuration registers.
2 8 bit OFFSET provided by an external handler, & means concatenation. Coprocessor

exceptions/interrupts do not use OFFSET.

6.1.2 Signalling an interrupt

An interrupt request is signalled by driving a high pulse on one of the interrupt lines. The timing of

the pulse depends on the mode: whether an external handler is used or not. The timing of the

coprocessor interrupt/exception lines is fixed. Each interrupt line has a pulse detection circuitry and

an interrupt request gets through when that circuitry sees a pulse, that is, after seeing a falling edge.

If an external handler is used, the offset should be driven simultaneously with the request line, see

interface –document.

Once detected, a request is saved in a register called INT_PEND, which is visible to the software.

After this it has to go through the priority resolving and masking stage. The following conditions

have to be true for a pending request to get through: - interrupts enabled: IE –bit in processor status

register (PSR) must be high.

- Interrupt mask register has to have a high bit (‘1’) in the corresponding position.

- No interrupts with higher priority are pending or in service.

- No exceptions on pipeline (see document about exceptions)

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

Once a request gets through, the processor starts execution of an interrupt service routine as soon as

possible: pipeline is executed to a point where it is safe to switch to interrupt service routine. This

takes 1 – 3 cycles depending on the contents of the pipeline. When a service routine is started the

corresponding bit in INT_SERV –register is set. At the same time, the processor drives a pulse to

INT_ACK –output in order to signal to an external handler that the latest request got through and is

now in service. This is the earliest point where a new request from the same source can be

accepted.

6.1.3 Priority resolving

A priority for a particular source is set by writing a four bit value in a field reserved for that source

in the EXT_INT_PRI or COP_INT_PRI –register. Priority can have any value between 0 and 15,

zero being the highest priority. Whether the priority is fixed (external handler used) or set by

software, priority resolving works the same way. If multiple interrupts are signalled simultaneously,

the one with the highest priority (lowest number) will be served first. Note that for coprocessor

exceptions/interrupts the priority can always be set by software. If multiple sources have the same

priority, resolving is performed internally in the following order (COP0_INT having the highest

priority): COP0_INT, COP1_INT, COP2_INT, COP3_INT, EXT_INT0, EXT_INT1, EXT_INT2,

EXT_INT3, EXT_INT4, EXT_INT5, EXT_INT6, EXT_INT7. If the same interrupt that is

currently in service, is signalled, the interrupt service routine is restarted as soon as it has finished

(of course assuming there’s no interrupt requests with higher priority pending). A request with

higher priority can interrupt the current service routine if interrupts have been re-enabled with ei –

instruction (nesting of interrupts).

6.1.4 Switching to an interrupt service routine

The following steps are taken when switching to an interrupt service routine:

- return address is saved to hardware stack (a special logic structure to allow fast switching)

- Processor status register (PSR) is saved to hardware stack - condition register CR0 is

saved to hardware stack.

- The start address of an interrupt service routine is calculated (see table 2) and placed to

program counter.

- Signal INT_ACK is pulsed (except with coprocessor exceptions/interrupts!).

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

- The bit corresponding to the interrupt source is set high in INT_SERV –register.

- The bit corresponding to the interrupt source is cleared from INT_PEND – register.

- Further interrupts are disabled by setting IE bit low in PSR

- Processor status: user mode and, instruction decoding are set according to control registers

INT_MODE_IL and INT_MODE_UM. (If super user –mode is set, register set 2 is

selected as default for reading and writing)

- Execution of the interrupt service routine in question is started.

6.1.5 Interrupt Service Routine

As the interrupt service routines has higher priority than the system call handlers and it is

possible that an interrupt occurs while the kernel was servicing a system call (one can disable

interrupts while in kernel but note that kernel could support even interrupts inside kernel routines.

More extensive testing is needed) and corrupts the register bank 2 (or Set 2 registers or super user

register) the very first thing does in the interrupt service routines is to save all this registers using

the macro SAVE_ALL.

Then enquiry is made if there is nested execution of exception and/or interrupt handlers i.e.,

whether the kernel was servicing a system call request by some process or executing some lower

priority interrupts or was executing the user process. That is to know if the execution was in kernel

mode or user mode before the interrupt occurred. The following things will be done in the different

situations just mentioned above

1. If the kernel was in user mode before the interrupt then there is need to change the

stack pointer and the frame pointer to point to the kernel reserved static memory.

2. If it was previously in the kernel mode servicing some system call or servicing an

interrupt then there is no need to change the stack pointers and it can continue using

the same space for handling the interrupt, but the prev stack pointers will be saved in

the variables KERNEL_FP and KERNEL_SP and the previous values of these

variables will be pushed to the stack.

The addresses for this interrupts are registered into the core control block (CCB) registers while

kernel start-up and is done in the file /kernel/boot.x. The processor automatically starts executing

the instructions starting from the address given in the CCB registers related to that interrupt. Only

Timer 0 interrupt was enabled at the time of this writing along with the Coprocessor interrupts.

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

Timer 1 can be enabled very easily in the boot.x file and the same interrupt handler can be used for

both the timer interrupts or a different handler can be used, in that case the handlers starting address

have to be registered (stored) in the CCB appropriate registers. Timer interrupts are used for timing

measurements inside the kernel and are discussed in the next chapter.

Notes:

• The interrupts are disabled using the macro block_interrupts and are restored to the same

state which was just before blocking the interrupts. Restoring is done using the macro

restore_interrupts both written in the file /kernel/all_macros.h

• Block_interrupts stores the current value of INT_MASK in the CCB registers into a global

memory location and then disables the interrupts. There are three different storage locations

used by the block_interrupts in three different cases, i.e. in Interrupt handler, Exception

handler and elsewhere in the kernel.

• Similarly restore_interrupts uses the INT_MASK value stored in the memory and restores it

into CCB registers once executing in the critical region is done. These two macros are used

instead of the instructions di and ei.

6.1.6 Returning from an interrupt service routine

An interrupt service routine has to execute a reti –instruction in order to resume program execution

where it was interrupted. This causes the following things to happen:

- Processor status is restored from the hardware stack.

- CR0 is restored from the hardware stack.

- Program counter is restored from the hardware stack.

- signal INT_DONE is pulsed (except with coprocessor exceptions/interrupts!).

- The INT_SERV bit is cleared.

- Interrupts are enabled if they were enabled before entering the service routine. (There is a

possibility that di –instruction is executed just before entering the service routine, but after a

request got through in which case the interrupt is served but interrupts will be disabled on

return)

6.1.7 Internal interrupt handler control & status registers

Bit positions and interrupt sources are associated as follows:

(INT_MODE_IL, INT_MODE_UM, INT_MASK, INT_SERV, INT_PEND)

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

Bit 11 – EXT_INT7,

Bit 10 – EXT_INT6,

...

Bit 4 – EXT_INT7,

Bit 3 – COP3_INT,

...

Bit 0 – COP0_INT.

Table 7, Internal interrupt handler registers (in CCB)

offset mnemonic width description notes
02h COP0_INT_VEC 32 Co-processor 0 interrupt service

routine start address.
03h COP1_INT_VEC 32 Co-processor 1 interrupt service

routine start address.
04h COP2_INT_VEC 32 Co-processor 2 interrupt service

routine start address.
05h COP3_INT_VEC 32 Co-processor 3 interrupt service

routine start address.
06h EXT_INT0_VEC 32 External interrupt 0 service routine

base address.
07h EXT_INT1_VEC 32 External interrupt 1 service routine

base address.
08h EXT_INT2_VEC 32 External interrupt 2 service routine

base address.
09h EXT_INT3_VEC 32 External interrupt 3 service routine

base address.
0ah EXT_INT4_VEC 32 External interrupt 4 service routine

base address.
0bh EXT_INT5_VEC 32 External interrupt 5 service routine

base address.
0ch EXT_INT6_VEC 32 External interrupt 6 service routine

base address.
0dh EXT_INT7_VEC 32 External interrupt 7 service routine

base address.

should be
properly
aligned.

0eh INT_MODE_IL 12 Instruction decoding mode flags for
interrupt routines.

0fh INT_MODE_UM 12 User mode flags for interrupt routines.

See registers –
document: PSR

10h INT_MASK 12 Register for masking external and cop
interrupts

 individually. A low bit (‘0’) means
blocking an interrupt source, a high bit
enables an interrupt.

11h INT_SERV 12 Interrupt service status bits (active
high).

12h INT_PEND 12 Pending interrupt requests(active
high).

Read only. See
chapter Tricks.

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

13h EXT_INT_PRI 32 Bits 31 downto 28 : INT 7 priority
Bits 27 downto 24 : INT 6 priority
...
Bits 7 downto 4 : INT 1 priority
Bits 3 downto 0 : INT 0 priority

14h COP_INT_PRI 16 Bits 15 downto 12 : COP3 priority
Bits 11 downto 8 : COP2 priority
Bits 7 downto 4 : COP1 priority
Bits 3 downto 0 : COP0 priority

0 – highest
priority
15 – lowest
priority
Priorities for
external
interrupts can
only be
set if internal
handler is used.

6.1.8 Clearing a pending interrupt without running the service routine

The ability to clear bits in the INT_PEND –register directly would lead to situations where an

external interrupt handler would not know the real status of the latest interrupt request because

INT_ACK -signal would never go high for these cancelled interrupts. This kind of inconsistency is

not acceptable and that’s why INT_PEND is a read only register. If there is a need to ‘cancel’ a

request it can be done as follows (If internal CCB is mapped to protected memory area, super user

mode is needed):

- Interrupts should be disabled during these operations!

- Save the current value in the interrupt vector register of the INT source in question.

- Replace the old vector with a new one which points to a dummy routine (remember

OFFSET, if external handler is present) which executes reti – instruction only (and

maybe some acknowledge instructions for external handler).

- Set the interrupt source to highest priority and make sure that no other source shares

the same priority (of course save old values).

- Set mask bit for the interrupt source in question (save old value of INT_MASK)

- enable interrupts

- Poll the INT_PEND register; disable interrupts when the bit in question is low.

- Restore vector and priorities.

- Continue normally

Do not do this!

Do not change interrupt priorities while in interrupt service routine if you use nested interrupts

(unless you are 100% sure that a new request from a source cannot arise before a service routine is

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

finished). In extreme cases this can lead to hardware stack overflow if interrupt nesting level is

twelve and priorities are changed so that multiple requests from a single source can be active

simultaneously. Normally an interrupt service routine cannot be interrupted by a new request from

the same source because of priority resolving.

6.2 Exceptions

An exception means an event which will halt the processing of the current thread immediately and

causes the core to switch to an exception handling routine. An exception is considered an error

condition and has to be dealt with immediately. Note that very often in literature exception means

interrupting the processor in general. Exceptions in COFFEETM core can be thought as synchronous

interrupts as they are generated by the control unit to notify the privileged software like the kernel

to do something when an anomalous condition arises. The Processor when identifies an exception

stops everything it is doing and just jump to the exception handler, where the task that generated the

exception is made to TASK_STOPPED and deleted from the run queue. Below table gives the types

and codes of the exceptions in COFFEE Core. [1]

Table 8, Exception types and codes.

pri code name description
10 00000000 instruction

address
violation
3

While in user mode, instruction is fetched from memory
address not allowed for user.

6 00000001 unknown
opcode

Version 1.0 of COFFEE RISC does not have any unused
opcodes which makes this obsolete.

7 00000010 Illegal
instruction

While in 16 bit mode, trying to execute an instruction which
is valid only in 32 bit mode or trying to execute a super user
only instruction in user mode.

3 00000011 miss aligned
jump address 4

Calculated jump target is not aligned to word(32 bit mode) or
halfword(16 bit mode) boundary.

2 00000100 jump address
overflow

A PC relative jump below the bottom of the memory or
above the top of the memory.

9 00000101 miss aligned
instruction
address 1

Instruction address is not aligned according to mode. This
can be caused by:

- External boot address was not aligned to word
boundary -An interrupt vector is not properly
aligned or interrupt mode is not correctly set

- Exception handler entry address is not aligned to
word boundary (this will lock the core by causing
an eternal loop!)

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

- System entry address is not aligned to word
boundary

8 111xxxxx trap 2 processor encountered a trap instruction
5 00000110 arithmetic

overflow
The result of a signed arithmetic operation exceeds 231 -1 or
falls below - 231

0 00000111 data address
violation

While in user mode, a data address refers to memory address
not allowed for user.

1 00001000 data address
overflow

Trying to index data below of the bottom or above of the top
of the memory

4 00001001 Trying to jump to protected instruction memory area while in
user -mode.

x
00001010
...
00011111

Illegal jump

Reserved for future extensions

6.2.1 Handling an exception

In case of an exception, core performs following tasks:

• Saves the address of the instruction causing the exception (or just an address, see table on

previous page) to CCB register EXCEPTION_PC.

• Saves to CCB register EXCEPTION_PSR processor status flags which were used when the

violating instruction was decoded.

• Saves the exception code (see table above) to CCB register EXCEPTION_CS.

• Disables interrupts.

• Switches to 32 bit decoding mode and super user mode with register set 2 as default for

reading and writing.

• Starts execution from a handler routine pointed by the CCB register EXCEP_ADDR.

Following things are guaranteed by hardware:

• The violating instruction is not able to modify the state of the processor (registers, status

flags, data memory).

• All instructions before the violating one (in the order of execution) are executed.

• None of the instruction following the violating one are executed (pipeline is flushed up to

the violating instruction).

• If multiple instructions on pipeline cause an exception simultaneously, the one which is first

in the order of execution is taken into account.

• Interrupt requests cannot get through if an exception is signalled.

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

• An exception handler routine will always see updated values of EXCEPTION_XX –

registers immediately.

6.2.2 Exception Handler

• When a new exception is signalled, then the processor stops everything it was doing

previously and starts executing the instructions that start from the address in the register

EXCEP_ADDR in the CCB registers.

• The code of the exception is fetched from the CCB register EXCEPTION_CS whose offset

is “15h” from the CCB_BASE. Depending on the code, if the exception was caused by the

user application (unprivileged software) then its state is just changed to TASK_STOPPED

or if it was caused by the kernel then the processor is restarted using the system call

sys_reboot(). Traps and individuals handling for all exception codes will be done in the

future works.

• It is worth to note here that exception handler works in the same static space of the

task/application that generated an exception. This will not create any problems and all the

situations that could occur at this time are examined.

1. When the user application caused an exception, then the kernel starts executing the

exception handler (exception_handler ()) using the same stack space that the process

was using. If the exception handler is able to recover from the abnormal situation that

created the exception then it returns just had to start executing the process without

thinking anything about the stack pointers. If the exception handler is not able to recover

from the abnormal condition caused by the user process, then the scheduler is called

indirectly by calling a dummy system call dummy_idle_brain(). The scheduler will

remove the process from the run queue and the stack pointers are automatically updated

for the new process by the system call handler and that process selected by the scheduler

is resumed at the end of the end of system call by executing the instruction retu. The

reason of using the system call to call the scheduler indirectly is to follow the

conventions of the Linux calling the scheduler only after the system call.

2. It is required that exceptions are not generated inside the kernel, but if it happens to

occur inside the kernel then the kernel should be intelligent enough to identify that

before it looses control over the execution sequences. In the CUP-OS, when an

exception is caused in the kernel, it is identified and the processor is made to reboot.

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

6.2.3 Returning from the Exception Handler

Depending on which process caused the exception, execution can be resumed from a different

context or from the same context or it might not be resumed at all. In any case, appropriate flags are

written to SPSR and the resume address written to PR31 (the link register). Then, executing retu –

instruction will update the PSR with flags written to SPSR and load the program counter with the

value in PR31 causing the processor to start executing instructions from the desired memory

location in the desired mode.

Notes

• It is clear that at the time of this writing, the kernel deletes the process from the run queue if

it is an unprivileged process else it restarts the processor.

• EXCEP_ADDR –register is initialised in boot code. Incorrect address may cause eternal

loop which will lock the processor until it is reset.

• Interrupts are disabled when entering the handler routine by both hardware and also

software; they are enabled after just before the handler exits.

• If the exception is caused by an interrupt service routine (see interrupts) and the routine is

disabled permanently, you should pop the return address of that routine from the hardware

stack to ensure correct operation of other interrupt routines.

6.3 System Calls

The process running in User Mode cannot access the system resources by themselves but ask the

Operating System to do it instead. The Operating system accesses the system resources in a way

which is believed to be secure by other users and the operating system itself. Operating systems

offer processes running in User Mode a set of interfaces to interact with hardware devices such as

the CPU, disks, printers, and so on. Putting an extra layer between the application and the hardware

has several advantages. First, it makes programming easier, freeing users from studying low-level

programming characteristics of hardware devices. Second, it greatly increases system security, since

the kernel can check the correctness of the request at the interface level before attempting to satisfy

it [14]. Last but not least, these interfaces make programs more portable since they can be compiled

and executed correctly on any kernel that offers the same set of interfaces. UNIX systems

implement most interfaces between User Mode processes and hardware devices by means of system

calls issued to the kernel. This chapter examines in detail how system calls are implemented by the

Linux kernel.

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

Figure 15: System Calls

6.3.1 API and System Calls

The API is a function definition that specifies how to obtain a given service and a System Call is an

explicit request to the kernel made via a software interrupt using the instruction SCALL. UNIX like

systems (which means mostly UNIX and all flavours of LINUX OS) include several libraries of

functions that provide APIs to programmers. APIs are mostly just wrapper routines which just make

a system call in an accepted style. Usually, each system call corresponds to a wrapper routine; the

wrapper routine defines the API that application programs should refer to. The converse is not true;

an API does not necessarily correspond to a specific system call [9]. The API could offer its

services directly in User Mode but no such services are available in the API at the moment of this

writing. A single API function could make several system calls. Moreover, several API functions

could make the same system call but wrap extra functionality around it.

A programmer who writes programs in user mode, writes functions such as getpid() to access the

file system and write to the hard drive, or the floppy. Such function is called a wrapper routine. The

way it works is that the open wrapper routine will send a software interrupt with its system call

number to be looked up in the sys_call_table in the /kernel/entry.h which has the same number in

Application

Application

Application

Kernel

 System Calls

 Drivers

 Memory
 Manager

 Timer
Manager

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

the defines called __NR_getpid() in the unistd.h file. When this number is matched in the symbol

table, it will have the address to execute the open function. The user mode will be switched to

kernel mode, also called CPU mode and execute the proper C/assembly code to get the PID of the

current running process. User makes system call as they call normal functions without needing to

know the internals of the kernel. This function get converted to another function with the same

name and arguments but does nothing except checking the validity of the arguments passed and

then calling for the kernel service using the instruction SCALL. The system call numbers in the

unistd.h looks like the following

#define __NR_setup 0

#define __NR_exit 1

#define __NR_vfork 2

#define __NR_read 3

#define __NR_write 4

#define __NR_open 5

#define __NR_close 6

#define __NR_waitpid 7

#define __NR_creat 8

#define __NR_link 9

…
…

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

Figure 16: System Call interface from user to kernel

System call handler does the following [13]

• SAVE_ALL

• get current task struct

• syscall # not OK? !badsys

• dispatch specific syscall !*(sys_call_table[call_number])

• save return value

• Service system call if good system call number.

• need to reschedule? !reschedule if yes

• RESTORE_ALL.

• Return to the current task.

6.3.2 Available System Calls

 Even though uClinux has about 200 system calls, not all have been ported at the time of this

writing. Some handful of them were ported and well tested and some calls just return the an error

value indicating that this system call has not yet been implemented. The following is the list of

those system calls.

 Kernel Mode User Mode

 getpid()

User-mode

getpid() {
.. …. ….
.. … ….
scall
}
User-mode

System call:
..
sys_getpid()
..

Privilaged Mode

sys_getpid() {
..
..

}
Privilaged Mode

System call
invocation by
application
program

wrapper routine
library/unistd.h

System call handler System call service
 routine

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

Table 9, System calls available in CUP-OS

 Name

 Description

 sys_getpid Returns the process ID of the current process.

 sys_pause The pause library function causes the invoking process (or thread)
to sleep until a signal is received that either terminates it or causes
it to call a signal-catching function.

 sys_nice adds inc to the nice value for the calling pid. (A large nice value
means a low priority.)

 sys_getppid Returns the process ID of the parent of the current process.

 sys_reboot Reboots the processor within one timer interrupt time.

 sys_getpriority Get the priority of the current process.

 sys_setpriority Set the priority of the current process.

 sys_idle idle is an internal system call used during bootstrap. It lowers
process priority, and enters the main scheduling loop. Idle never
returns. Only process 0 may call idle. Any user process, even a
process with super-user permission, will receive EPERM.

 sys_sched_setparam sets the scheduling parameters associated with the scheduling
policy for the process identified by pid. If pid is zero, then the
parameters of the current process are set. The interpretation of the
parameter p depends on the selected policy. Currently, the
following three scheduling policies are supported under Linux:
 SCHED_FIFO, SCHED_RR, and SCHED_OTHER.

 sys_sched_setscheduler sets both the scheduling policy and the associated parameters for
the process identified by pid. If pid equals zero, the scheduler of
the calling process will be set. The interpretation of the parameter
p depends on the selected policy. Currently, the following three
scheduling policies are supported under Linux: SCHED_FIFO,
SCHED_RR, and SCHED_OTHER

 sys_sched_getscheduler queries the scheduling policy currently applied to the process
identified by pid. If pid equals zero, the policy of the calling
process will be retrieved.

 sys_sched_yield A process can relinquish the processor voluntarily without blocking
by calling sched_yield. The process will then be moved to the end
of the queue for its static priority and a new process gets to run. If
the current process is the only process in the highest priority list at
that time, this process will continue to run after a call to
sched_yield.

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

sys_sched_get_priority_max returns the maximum priority value that can be used with the
scheduling algorithm identified by policy. Supported policy
values are SCHED_FIFO, SCHED_RR, and SCHED_OTHER.

sys_sched_get_priority_min returns the minimum priority value that can be used with the
scheduling algorithm identified by policy. Supported policy
values are SCHED_FIFO, SCHED_RR, and SCHED_OTHER.

sys_dummy_idle_brain Just sets a value so the scheduler is activated while returning from
the system call. This system call is mostly used by the kernel itself
for indirectly calling the scheduler.

6.3.3 More about system calls

Several system calls have been introduced to allow processes to change their priorities and

scheduling policies. In Linux, users are always allowed to lower the priorities of their processes.

However, if they want to modify the priorities of processes belonging to some other user or if they

want to increase the priorities of their own processes, they must have superuser privileges. CUP-OS

doesn’t support users, hence no Superuser concept, any process can change its priorities but it is not

given privileges to change the priorities of other processes. From the very beginning the kernel is

being designed by assuming that the applications to be run on the COFFEE core are trust worthy

and they will not do any nasty things to corrupt or effect other processes.

The nice() System Call

The nice() system call allows processes to change their base priority. The integer value contained

in the increment parameter is used to modify the priority field of the process descriptor. The nice

Unix command, which allows users to run programs with modified scheduling priority, is based on

this system call. Note that all the C code for the system calls has been used for the latest version of

uClinux and it can be found here that some stuff does nothing for now but they are still in the CUP-

OS for making upgrades in it easy. Most of them will be found useful in the later versions.

The sys_nice() service routine handles the nice() system call. Although the increment parameter

may have any value, absolute values larger than 40 are trimmed down to 40. Traditionally, negative

values correspond to requests for priority increments, while positive ones correspond to requests for

priority decrements.

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

The function starts by copying the value of increment into the newprio local variable. sys_nice()

changes the sign of newprio and it sets the increase local flag:

 newprio = increment;

 if (increment < 0) {

 // if (!suser()) everyone is super user right now

 // return -EPERM;

 newprio = -increment;

 increase = 1;

 }

If newprio has a value larger than 40, the function trims it down to 40. At this point, the newprio

local variable may have any value included from 0 to 40, inclusive. The value is then converted

according to the priority scale used by the scheduling algorithm. The resulting value is copied into

increment with the proper sign. Since the highest base priority allowed is 2 * DEF_PRIORITY, the

new value is given below:

if (newprio > 40)

 newprio = 40;

 newprio = (newprio * DEF_PRIORITY + 10) / 20;

 increment = newprio;

if (increase)

 increment = -increment;

The function then sets the final value of priority by subtracting the value of increment from it.

However, the final base priority of the process cannot be smaller than 1 or larger than

2*DEF_PRIORITY.

 newprio = current->priority - increment;

 if ((signed) newprio < 1)

 newprio = 1;

 if (newprio > DEF_PRIORITY*2)

 newprio = DEF_PRIORITY*2;

 current->priority = newprio;

 return 0;

The getpriority() and setpriority() System Calls

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

The nice() system call affects only the process that invokes it. Two other system calls, denoted as

getpriority() and setpriority(), act on the base priorities of all processes. getpriority() returns 20

plus the highest base priority among all processes; setpriority() sets the base priority of all

processes to a given value. In Linux these system calls work only on the processes of the same

group but since there is no groups support yet in CUP-OS they work fine on all processes.

The kernel implements these system calls by means of the sys_getpriority() and sys_setpriority()

service routines. The parameter who doesn’t mean anything for now until the kernel supports the

groups, hope it doesn’t confuse the readers, they will be used in near future.

System Calls Related to Real-Time Processes

We now introduce a group of system calls that allow processes to change their scheduling discipline

and, in particular, to become real-time processes.

The sched_getscheduler() and sched_setscheduler() system calls

The sched_ getscheduler() system call queries the scheduling policy currently applied to the

process identified by the pid parameter. If pid equals 0, the policy of the calling process will be

retrieved. On success, the system call returns the policy for the process: SCHED_FIFO,

SCHED_RR, or SCHED_OTHER. The corresponding sys_sched_getscheduler() service routine

invokes find_task_by_pid(), which locates the process descriptor corresponding to the given pid

and returns the value of its policy field.

The sched_setscheduler() system call sets both the scheduling policy and the associated parameters

for the process identified by the parameter pid. If pid is equal to 0, the scheduler parameters of the

calling process will be set.

The corresponding sys_sched_setscheduler() function checks whether the scheduling policy

specified by the policy parameter and the new static priority specified by the param->sched_priority

parameter are valid. If everything is OK, it executes the following statements:

 p->policy = policy;

 p->rt_priority = param->sched_priority;

 if (p->next_run)

 move_first_runqueue(p);

 current->need_resched = 1;

The sched_setparam() system call

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

The sched_setparam() system call is similar to sched_setscheduler(): it differs from the latter by

not letting the caller set the policy field's value.[8] The corresponding sys_sched_setparam()

service routine is almost identical to sys_sched_setscheduler(), but the policy of the affected

process is never changed.

The sched_ yield() system call

The sched_ yield() system call allows a process to relinquish the CPU voluntarily without being

suspended; the process remains in a TASK_RUNNING state, but the scheduler puts it at the end of

the runqueue list. In this way, other processes having the same dynamic priority will have a chance

to run. The call is used mainly by SCHED_FIFO processes. The corresponding sys_sched_ yield()

service routine executes these statements:

 asm("block_interrupts int_mask_temp\n\t");

 move_last_runqueue(current);

 current->counter = 0;

 need_resched = 1;

 asm("restore_interrupts int_mask_temp\n\t");

 return 1;

The sched_get_priority_min() and sched_get_priority_max()

These system calls return, respectively, the minimum and the maximum real-time static priority

value that can be used with the scheduling policy identified by the policy parameter. The

sys_sched_get_priority_min() service routine returns 1 if current is a real-time process, 0

otherwise.

The sys_sched_get_priority_max() service routine returns 99 (the highest priority) if current is a

real-time process, 0 otherwise.

NOTES:

1. Recall that stopped and suspended processes cannot be selected by the scheduling algorithm

to run on the CPU.

2. Actually, things could be much worse than this; for example, if the time required for task

switch is counted in the process quantum, all CPU time will be devoted to task switch and

no process can progress toward its termination. Anyway, you got the point.

3. These conditions look like voodoo magic; perhaps, they are empirical rules that make the

SMP scheduler work better.

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

4. The Linux kernel has been modified in several ways so it can handle a few hard real-time

jobs if they remain short. Basically, hardware interrupts are trapped and kernel execution is

monitored by a kind of "superkernel." These changes do not make Linux a true real-time

system, though.

5. Since this system call is usually invoked to lower the priority of a process, users who invoke

it for their processes are "nice" toward other users.

6.3.4 Adding a System Call

• link statically or implement as a kernel module

• create a “library wrapper” with _syscallN macros

o /kernel/library/unistd.h

o syscallN(return_type, entry, type1, arg1, type2, arg2, …)

o allocate a system call number (i) to it in /kernel/library/unistd.h

• register the address of the new system call in the ith array location in the sys_call_table [].

• register the wrapper routine, library call related to the sys_whatever in

/kernel/library/coffee.h to sys_callX where X is the number of parameters to the system call.

• Validate all parameters!

• return appropriate error codes

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

7 Timing Measurement

The main attention in this chapter is kernel timers. Kernel timers are used to dispatch the execution

of a particular function (called ‘timer handler’) at a specific time in the future.

7.1 Hardware Timers

COFFEE core has two independent built-in timers. Both of then are programmable timers, 32 bit

wide and both having separate 8 bit divisor. Timers can be configured as watchdog timers or timer

tick generators for system. Timer registers reside inside CCB (core configuration block) and can be

accessed using ld and st instructions. Table below explains the meaning and usage of timer

registers.

7.1.1 Timer registers

Table 10, Timer Control and Configuration Registers

register
mnemonic

bit field
mnemonic

 bits explanation

TMR0_CNT [31:0] Current value of the timer0 counter. Can be
set to arbitrary value.

TMR0_MAX_CNT

 [31:0] The maximum value of timer0 counter.
Depending on CONT –bit, the timer will
stop at maximum value or restart from zero.
Note that, you can set a value greater than
maximum count in TMR0_CNT –register in
which case the timer counter will count to
0xffffffff and start over from zero.

TMR1_CNT

 [31:0] Current value of the timer1 counter. Can be
set to arbitrary value.

TMR1_MAX_CNT

 [31:0] The maximum value of timer1 counter.
Depending on CONT –bit, the timer will
stop at maximum value or restart from zero.
Note that, you can set a value greater
than maximum count in TMR1_CNT –
register in which case the timer counter will
count to 0xffffffff and start over from zero.

TMR1_CONF [31:16] Configuration bits for timer1. See table 2 for
bit field definitions.

TMR_CONF
 TMR0_CONF [15:0] Configuration bits for timer0. See table 2 for

bit field definitions.

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

Configuration registers TMR1_CONF and TMR0_CONF bit fields

 EN 31/15 EN = 1 enables timer. A timer can be stopped at any moment by

writing EN = 0. Clearing EN bit will zero timer divider => timer
will be incremented [DIV] + 1 clock cycles after enabling it.

 CONT 30/14 CONT = 1: Continuous mode. Timer counter will start from
zero after reaching maximum count defined in
TMRx_MAX_CNT – register.
CONT = 0: Timer counter will stop at maximum count.

 GINT 29/13 GINT = 1: Generate an interrupt when maximum count is
reached. GINT = 0: Do not generate interrupts.

WDOG 28/12 WDOG = 1: Enable watchdog function. If the timer reaches
maximum count defined in TMRx_MAX_CNT the core will be
reset.

 - 27/11 Reserved, 0 or 1 can be written.

 INTN [26:24]/[10:8] Bit field defining which interrupt to associate the timer with:
“000” => EXT_INT0 ... “111” => EXT_INT7

 DIV [23:16]/ [7:0] Divider value which defines how many clock cycles
corresponds to one timer cycle: A timer counter will be
incremented every [DIV] + 1 cycles, that is a zero value in DIV
field sets the timer frequency to be the same as clock frequency
of the core.

The role of this timer is similar to the alarm clock of a microwave oven: to make the user aware that

the cooking time interval has elapsed. Instead of ringing a bell, this device issues a special interrupt

called timer interrupt, which notifies the kernel that one more time interval has elapsed. There is a

difference between this alarm and the Timer that is it can be set if the timer issues this interrupt only

once the time elapsed or it issues interrupts continuously every time the time specified in

TMRx_MAX_CNT elapsed. This is done using the bit CONT inside the register TMR_CONF.

7.1.2 Configuration of Timer registers at start up

Continuous interrupting mode for timer 0, timer 1 disabled

EN 31/15 EN = 1 enables timer.

CONT 30/14 CONT = 1: Continuous mode.

GINT 29/13 GINT = 1: Generate an interrupt when maximum count is reached.

WDOG 28/12 WDOG = 0: Disable watchdog function

- 27/11 Reserved, 0 or 1 can be written.

INTN [26:24]/[10:8] = 0b111 Bit field defining which interrupt to associate the timer

with

DIV [23:16]/ [7:0] = 0xFF Divider value

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

 // Timer0 generates an interrupt every 10ms assuming 50MHz processor speed

 // Writes to instruction memory are mapped to

 // 0xffffc000...0xffffffff

Timer Tick Handler

[6] At the time of this writing only one timer interrupt (TIMER0) was enabled to the interrupt line

external interrupt 7 and also the coprocessors interrupts were enabled. Timer 0 is used as a timer

tick for the kernel which is used for all timing management purposes. When this interrupt occurs the

kernel updates its timing count in the variable JIFFIES and also checks if any process has run out of

its time quantum and sets the value of the need_resched = 1 if the scheduler needs to be called be

the near future to make a process switch. Also it is checked if the process has made any system call

by checking the incremented value of the variable syscall_called_timer in the current process

descriptor to the value 2000 (one can change this value to appropriate one), if no system call is

made from the past 2000 ticks then it is assumed that the current process is stuck or doing nothing

other than just looping doing no productive work and eating up the processor time, and hence its

state is made to TASK_STOPPED and the scheduler is activated by calling a dummy system call

which will make the scheduler remove this task from the run queue. Then some timer queues are

checked if there are any processes with expired timers.

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

Figure 17: Flowchart of interrupt handler

Yes

Yes

No
Yes

No PC loaded with
address of interrupt
handler

Interrupt?

Increment count
of nesting depth

Nested interrupts
and/or exception

- Increment JIFFIES,
- Check current process counters
- enabled need_resched if process runs out of time
- check timer lists and wake process if
 process sleep time expires.

- Save Stack Pointers.
- Load SP’s pointing

to the kernel memory
area from variables

 KERNEL_SP &
 KERNEL_FP

 Normal
Execution Flow

 Reti

Nested interrupts
and/or exception

Decrement count
of nesting depth

- store SP’s pointing to
the kernel memory
area into variables

 KERNEL_SP &
 KERNEL_FP
- Restore USR SP’s

 Start

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

7.2 Software Timers

The ultimate resources for time keeping in the kernel are the timers. Timers are used to schedule

execution of a function (a timer handler) at a particular time in the future. They thus work

differently from task queues and tasklets in that you can specify when in the future your function

will be called, whereas you can't tell exactly when a queued task will be executed. On the other

hand, kernel timers are similar to task queues in that a function registered in a kernel timer is

executed only once -- timers aren't cyclic.

There are times when you need to execute operations detached from any process's context, like

turning off the floppy motor or finishing another lengthy shutdown operation. In that case, delaying

the return from close wouldn't be fair to the application program. Using a task queue would be

wasteful, because a queued task must continually reregister itself until the requisite time has passed.

A timer is much easier to use. You register your function once, and the kernel calls it once when the

timer expires. Such functionality is used often within the kernel proper, but it is sometimes needed

by the drivers as well, as in the example of the floppy motor.

The kernel timers are organized in a doubly linked list. This means that you can create as many

timers as you want. A timer is characterized by its timeout value (in jiffies) and the function to be

called when the timer expires. The timer handler receives an argument, which is stored in the data

structure, together with a pointer to the handler itself.

The data structure of a timer looks like the following, which is extracted from “/kernel/sched.h”):

 struct timer_list {

 struct timer_list *next; /* never touch this */

 struct timer_list *prev; /* never touch this */

 unsigned long expires; /* the timeout, in jiffies */

 unsigned long data; /* argument to the handler */

 void (*function)(unsigned long); /* handler of the timeout */

 };

The timeout of a timer is a value in jiffies. Thus, timer->function will run when jiffies is equal to or

greater than timer->expires. The timeout is an absolute value; it is usually generated by taking the

current value of jiffies and adding the amount of the desired delay.

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

Once a timer_list structure is initialized, add_timer inserts it into a sorted list, which is then polled

more or less 100 times per second.

These are the functions used to act on timers:

void init_timer(struct timer_list *timer);

This inline function is used to initialize the timer structure. Currently, it zeros the prev and next

pointers. Programmers are strongly urged to use this function to initialize a timer and to never

explicitly touch the pointers in the structure, in order to be forward compatible.

 timer->next = NULL;

 timer->prev = NULL;

void add_timer(struct timer_list *timer);

This function inserts a timer into the global list of active timers.

 unsigned long flags;

 asm("block_interrupts int_mask_temp\n\t");

 internal_add_timer(timer); //actual calculations of time

 asm("restore_interrupts int_mask_temp\n\t");

int del_timer(struct timer_list *timer);

If a timer needs to be removed from the list before it expires, del_timer should be called. When a
timer expires, on the other hand, it is automatically removed from the list.

int ret;
 unsigned long flags;
 asm("block_interrupts int_mask_temp\n\t");
 ret = detach_timer(timer);
 timer->next = timer->prev = 0;
 asm("restore_interrupts int_mask_temp\n\t");
 return ret;

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

8 Process Scheduling

Scheduler selects the most deserving process to run out of all of the runnable processes in the

system. A process cannot run on the processor continuously for a very long time if there are other

processes waiting for their chance to get the CPU time. The scheduler is the one that decides which

process to be allowed to run and for how long time depending on some policies. This chapter dwells

into the topic of process scheduling.

8.1 Scheduling Policies

The scheduler is the kernel part that decides which runnable process will be executed by the CPU

next. The Linux scheduler offers three different scheduling policies, one for normal processes and

two for real-time applications. A static priority value sched_priority is assigned to each process and

this value can be changed only via system calls. Conceptually, the scheduler maintains a list of

runnable processes for each possible sched_priority value, and sched_priority can have a value in

the range 0 to 99. In order to determine the process that runs next, the Linux scheduler looks for the

non-empty list with the highest static priority and takes the process at the head of this list. The

scheduling policy determines for each process, where it will be inserted into the list of processes

with equal static priority and how it will move inside this list.

SCHED_OTHER

This is the default universal time-sharing scheduler policy used by most processes,

SCHED_FIFO and SCHED_RR are intended for special time-critical applications that need

precise control over the way in which runnable processes are selected for execution. Processes

scheduled with SCHED_OTHER must be assigned the static priority 0, processes scheduled

under SCHED_FIFO or SCHED_RR can have a static priority in the range 1 to 99. Only

processes with superuser privileges can get a static priority higher than 0 and can therefore be

scheduled under SCHED_FIFO or SCHED_RR. The system calls sched_get_priority_min and

sched_get_priority_max can be used to find out the valid priority range for a scheduling policy

in a portable way on all POSIX.1b conforming systems.

All scheduling is preemptive: If a process with a higher static priority gets ready to run, the

current process will be preempted and returned into its wait list. The scheduling policy only

determines the ordering within the list of runnable processes with equal static priority.

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

SCHED_FIFO: First In-First Out scheduling

SCHED_FIFO can only be used with static priorities higher than 0, which means that when a

SCHED_FIFO processes becomes runnable, it will always preempt immediately any currently

running normal SCHED_OTHER process. SCHED_FIFO is a simple scheduling algorithm

without time slicing. For processes scheduled under the SCHED_FIFO policy, the following

rules are applied: A SCHED_FIFO process that has been preempted by another process of

higher priority will stay at the head of the list for its priority and will resume execution as soon

as all processes of higher priority are blocked again. When a SCHED_FIFO process becomes

runnable, it will be inserted at the end of the list for its priority. A call to sched_setscheduler or

sched_setparam will put the SCHED_FIFO (or SCHED_RR) process identified by pid at the

start of the list if it was runnable. As a consequence, it may preempt the currently running

process if it has the same priority. (POSIX 1003.1 specifies that the process should go to the

end of the list.) A process calling sched_yield will be put at the end of the list. No other events

will move a process scheduled under the SCHED_FIFO policy in the wait list of runnable

processes with equal static priority. A SCHED_FIFO process runs until it is blocked by an I/O

request, it is preempted by a higher priority process, or it calls sched_yield.

 SCHED_RR: Round Robin scheduling

SCHED_RR is a simple enhancement of SCHED_FIFO. Everything described above for

SCHED_FIFO also applies to SCHED_RR, except that each process is only allowed to run for a

maximum time quantum. If a SCHED_RR process has been running for a time period equal to

or longer than the time quantum, it will be put at the end of the list for its priority. A

SCHED_RR process that has been preempted by a higher priority process and subsequently

resumes execution as a running process will complete the unexpired portion of its round robin

time quantum. The length of the time quantum can be retrieved by sched_rr_get_interval.

SCHED_OTHER: Default Linux time-sharing scheduling

SCHED_OTHER can only be used at static priority 0. SCHED_OTHER is the standard Linux

time-sharing scheduler that is intended for all processes that do not require special static

priority real-time mechanisms. The process to run is chosen from the static priority 0 list based

on a dynamic priority that is determined only inside this list. The dynamic priority is based on

the nice level (set by the nice or setpriority system call) and increased for each time quantum

the process is ready to run, but denied to run by the scheduler. This ensures fair progress among

all SCHED_OTHER processes.

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

8.2 Priorities of processes:

• Static: assigned by the processes and are not changed by the scheduler. Not used here in

CUP-OS

• Dynamic: Priority is adjusted to non real-time processes by the scheduler, i.e. the priority of

the process that did not have the access of the CPU for a very long time is boosted so that it

gets more chances to be selected next by the scheduler.

8.3 Process Pre-emption

All the Versions of Linux kernel (privileged user) are non pre-emptive! And the same with the

CUP-OS. Processes running in kernel mode cannot be interrupted after any instruction. Linux

processes are pre-emptive! Processes running in user mode can be interrupted after any instruction.

Pre-emption is done when either a process exits voluntarily i.e. it has nothing more to do on the

processor or when the time quantum assigned to that process in that epoch has expired. Time

quantum is an important parameter that decides the multitasking capability of the kernel. It is

sometimes also called as Context Switch.

Context switches can occur only in kernel mode. Kernel mode is a privileged mode of the CPU in

which only the kernel runs and which provides access to all memory locations and all other system

resources. Other programs, including applications, initially operate in user mode, but they can run

portions of the kernel code via system calls. A system call is a request in a Unix-like operating

system by an active process (i.e., a process currently progressing in the CPU) for a service

performed by the kernel, such as input/output (I/O) or process creation (i.e., creation of a new

process). I/O can be defined as any movement of information to or from the combination of the

CPU and main memory (i.e. RAM), that is, communication between this combination and the

computer's users (e.g., via the keyboard or mouse), its storage devices (e.g., disk or tape drives) or

other computers.

The existence of these two modes in Unix-like operating systems means that a similar, but simpler,

operation is necessary when a system call causes the CPU to shift to kernel mode. This is referred to

as a mode switch rather than a context switch, because it does not change the current process.

Context switching is an essential feature of multitasking operating systems. A multitasking

operating system is one in which multiple processes execute on a single CPU seemingly

simultaneously and without interfering with each other. This illusion of concurrency is achieved by

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

means of context switches that are occurring in rapid succession (tens or hundreds of times per

second). These context switches occur as a result of processes voluntarily relinquishing their time in

the CPU or as a result of the scheduler making the switch when a process has used up its CPU time

slice.

A context switch can also occur as a result of a hardware interrupt, i.e., a signal from a hardware

device (such as a keyboard, mouse, modem or system clock) to the kernel that an event (e.g., a key

press, mouse movement or arrival of modem data) has occurred.

Figure 18: Flowchart illustrating the scheduler functionality.

8.4 Duration of the Time Quantum

 Too Short:

 If the quantum is too short then the real productive time for a process is very small compared

to the overhead needed for the kernel to make a switch and manage things. Quantum expires quite

often and the time it takes for the kernel to come into picture and understand the current scenario

No

Yes

CPU allocated to the
current process

Interrupt current process
(Set need_resched of
current)

Select another
 Process

Priority > current
process` priority

 Process entered
 TASK_RUNNING

Time quantum
 expires

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

and make another process as current one is more than the time the process actually runs on the

CPU.

Too Long:

 If the quantum is too long then each process productive time on the CPU is good enough but

the process no longer seems to be executing concurrently. That is the system does not appear

concurrent and one can humanly differentiate that each process gets the CPU in chances which is

not tolerable to many of the users.

Within the kernel, processes that are in memory and are ready to run or are running are in state

TASK_RUNNING. The scheduler selects a process ready to run and allocate the CPU to it. The

scheduler is implemented by the function schedule() (found in the file /kernel/sched.c). The state

field in task_struct can take one of the following values:

#define TASK_RUNNING 0

#define TASK_INTERRUPTIBLE 1

#define TASK_UNINTERRUPTIBLE 2

#define TASK_ZOMBIE 4

#define TASK_STOPPED 8

#define TASK_SWAPPING 16

A process is in the TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE state while the OS

performs an I/O on its behalf or is sleeping. In the TASK_INTERRUPTIBLE state, a process can be

reactivated by a signal whereas it cannot in the TASK_UNINTERRUPTIBLE state. In state

TASK_ZOMBIE, a process has completed its execution but its parent has not done yet the system

call wait().

Within the kernel, statements that change the state of a process are of the form:

current->state = TASK_XXXX;

For example:

• The function sleep_on() assigns TASK_INTERRUPTIBLE before a process is put in the

wait queue.

• The function wake_up_process() assigns TASK_RUNNING after a process is removed from

the wait queue.

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

8.5 Implementation of the scheduler

The Linux scheduling algorithm works by dividing the CPU time into epochs. In a single epoch,

every process has a specified time quantum whose duration is computed when the epoch begins. In

general, different processes have different time quantum durations. The time quantum value is the

maximum CPU time portion assigned to the process in that epoch. When a process has exhausted its

time quantum, it is pre-empted and replaced by another runnable process. Of course, a process can

be selected several times from the scheduler in the same epoch, as long as its quantum has not been

exhausted--for instance, if it suspends itself to wait for I/O, it preserves some of its time quantum

and can be selected again during the same epoch. The epoch ends when all runnable processes have

exhausted their quantum; in this case, the scheduler algorithm recomputes the time-quantum

durations of all processes and a new epoch begins.

Each process has a base time quantum: it is the time-quantum value assigned by the scheduler to the

process if it has exhausted its quantum in the previous epoch. The users can change the base time

quantum of their processes by using the nice() and setpriority() system calls. A new process

always inherits the base time quantum of its parent.

In order to select a process to run, the Linux scheduler must consider the priority of each process.

Actually, there are two kinds of priority:

8.5.1 Static Priority

This kind is assigned by the users to real-time processes and ranges from 1 to 99. It is never

changed by the scheduler.

8.5.2 Dynamic Priority

This kind applies only to conventional processes; it is essentially the sum of the base time quantum

(which is therefore also called the base priority of the process) and of the number of ticks of CPU

time left to the process before its quantum expires in the current epoch.

Of course, the static priority of a real-time process is always higher than the dynamic priority of a

conventional one: the scheduler will start running conventional processes only when there is no

real-time process in a TASK_RUNNING state.

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

8.5.3 Counter

The number of ticks of CPU time left to the process before its quantum expires; when a new epoch

begins, this field contains the time-quantum duration of the process. The update_process_times()

function decrements the counter field of the current process by 1 at every tick.

Notice that the priority and counter fields play different roles for the various kinds of processes. For

conventional processes, they are used both to implement time-sharing and to compute the process

dynamic priority. For SCHED_RR real-time processes, they are used only to implement time-

sharing. Finally, for SCHED_FIFO real-time processes, they are not used at all, because the

scheduling algorithm regards the quantum duration as unlimited.

8.5.4 The schedule () Function

schedule () implements the scheduler. Its objective is to find a process in the runqueue list and then

assign the CPU to it. It is invoked, directly or in a lazy way, by several kernel routines. [3]

Direct invocation

The scheduler is invoked directly when the current process must be blocked right away because the

resource it needs is not available. In this case, the kernel routine that wants to block it proceeds as

follows:

1. Inserts current in the proper wait queue.

2. Changes the state of the current to either TASK_INTERRUPTIBLE or

TASK_UNINTERRUPTIBLE.

3. Invokes schedule ().

4. Checks if the resource is available; if not, goes to step 2.

5. Once the resource is available, removes current from the wait queue.

As can be seen, the kernel routine checks repeatedly whether the resource needed by the process is

available; if not, it yields the CPU to some other process by invoking schedule(). Later, when the

scheduler once again grants the CPU to the process, the availability of the resource is again

checked.

The scheduler is also directly invoked by many device drivers that execute long iterative tasks. At

each iteration cycle, the driver checks the value of the need_resched field and, if necessary, invokes

schedule() to voluntarily relinquish the CPU.

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

Lazy invocation

The scheduler can also be invoked in a lazy way by setting the need_resched field of current to 1.

Since a check on the value of this field is always made before resuming the execution of a User

Mode process, schedule() will definitely be invoked at some close future time.

Lazy invocation of the scheduler is performed in the following cases:

• When current has used up its quantum of CPU time; this is done by the

update_process_times() function.

• When a process is woken up and its priority is higher than that of the current process; this

task is performed by the reschedule_idle() function, which is invoked by the

wake_up_process() function.

• if (goodness(current, p) > goodness(current, current)) current->need_resched = 1.

• When a sched_setscheduler() or sched_ yield() system call is issued.

8.5.5 Actions performed by schedule()

Before actually scheduling a process, the schedule() function starts by running the functions left by

other kernel control paths in various queues. The function invokes run_task_queue() on the tq

_scheduler task queue. Linux puts a function in that task queue when it must defer its execution

until the next schedule() invocation:

Now comes the actual scheduling, and therefore a potential process switch. The value of current is

saved in the prev local variable and the need_resched field of prev is set to 0. The key outcome of

the function is to set another local variable called next so that it points to the descriptor of the

process selected to replace prev.

First, a check is made to determine whether prev is a Round Robin real-time process (policy field

set to SCHED_RR) that has exhausted its quantum. If so, schedule() assigns a new quantum to prev

and puts it at the bottom of the runqueue list:

if (!prev->counter && prev->policy == SCHED_RR)

{

prev->counter = prev->priority;

move_last_runqueue(prev);

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

}

prev->state = TASK_RUNNING;

If prev is not in the TASK_RUNNING state, schedule() was directly invoked by the process itself

because it had to wait on some external resource; therefore, prev must be removed from the

runqueue list:

if (prev->state != TASK_RUNNING)

del_from_runqueue(prev);

Next, schedule() must select the process to be executed in the next time quantum. To that end, the

function scans the runqueue list. It starts from the process referenced by the next_run field of

init_task, which is the descriptor of process 0 (swapper). The objective is to store in next the

process descriptor pointer of the highest priority process. In order to do this, next is initialized to the

first runnable process to be checked, and c is initialized to its "goodness".

 c = -1000;

 next = idle_task;

 while (p != idle_task) {

 int weight = goodness(p, prev);

 if (weight > c)

 c = weight, next = p;

 p = p->next_run;

Now schedule() repeatedly invokes the goodness() function on the runnable processes to determine

the best candidate:

 p = init_task.next_run;

 while (p != &init_task) {

 weight = goodness(prev, p);

 if (weight > c)

 c = weight; next = p;

 p = p->next_run;

 }

The while loop selects the first process in the runqueue having maximum weight. If the previous

process is runnable, it is preferred with respect to other runnable processes having the same weight.

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

Notice that if the runqueue list is empty (no runnable process exists except for swapper), the cycle is

not entered and next points to init_task. Moreover, if all processes in the runqueue list have a

priority lesser than or equal to the priority of prev, no process switch will take place and the old

process will continue to be executed.

A further check must be made at the exit of the loop to determine whether c is 0. This occurs only

when all the processes in the runqueue list have exhausted their quantum, that is, all of them have a

zero counter field. When this happens, a new epoch begins, therefore schedule() assigns to all

existing processes (not only to the TASK_RUNNING ones) a fresh quantum, whose duration is the

sum of the priority value plus half the counter value:

 if (c = 0) {

 for_each_task(p)

 p->counter = (p->counter >> 1) + p->priority;

 }

In this way, suspended or stopped processes have their dynamic priorities periodically increased. As

stated earlier, the rationale for increasing the counter value of suspended or stopped processes is to

give preference to I/O-bound processes. However, even after an infinite number of increases, the

value of counter can never become larger than twice[3] the priority value.

Now comes the concluding part of schedule(): if a process other than prev has been selected, a

process switch must take place. Before performing it, however, if the new selected process is not

the same as the current process then the software timer is added to the current process and it is made

to sleep for some period of time so that it if it doesn’t interfere the newly selected process at least

for the time it is made to sleep. This is done to make the new switch a bit more productive.

if (prev != next) {

 struct timer_list *timer_pointer;

timer_pointer = &prev->timer;

 if (timeout) {

 init_timer(timer_pointer);

 prev->timer.expires = timeout+jiffies;

 prev->timer.data = (unsigned long) prev;

 prev->timer.function = process_waittimeout;

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

 add_timer(timer_pointer);

 }

 current = next;

 }

 return;

Note :System Call Return Value:
A very important note which at least I couldn’t find in other documentations on the kernel on web is

that, when the process is out of its quantum then the timer interrupt handler will know this fact and

enable the need_resched value to “1” so that when the this process makes a system call then the

scheduler is called. Here in the scheduler there is one tricky place, In the above code find that the

most eligible process is made as current (current = next) before the system call’s return value is

given to the process that made a system call. So as there is no guarantee that the process that made

the system call will get the return value (Super User register R0) as it may be replaced by some

other process, the return value is saved into the current process structure and then the scheduler is

called. There are two possibilities now

1. The scheduler has done nothing that is it selected the prev process as current process; as

there is no other process more eligible than this one. Then it again restores the return value

into the register R0 and when the kernel returns to the user then user reads this R0.

2. The scheduler selects some other process as current process. Then when the scheduler is

done then again kernel restores the return value into register R0, but this time from the

newly selected process structure which has the return value related only to that process,

which is again correct.

8.5.6 Goodness of a Runnable Process

The heart of the scheduling algorithm includes identifying the best candidate among all processes in

the runqueue list. This is what the goodness () function does. It receives as input parameters prev

(the descriptor pointer of the previously running process) and p (the descriptor pointer of the

process to evaluate). The integer value c returned by goodness() measures the "goodness" of p and

has the following meanings:

c = -1000

p must never be selected; this value is returned when the runqueue list contains only init_task.

c = 0

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

p has exhausted its quantum. Unless p is the first process in the runqueue list and all runnable

processes have also exhausted their quantum, it will not be selected for execution.

0 < c < 1000

p is a conventional process that has not exhausted its quantum; a higher value of c denotes a higher

level of goodness.

c >= 1000

p is a real-time process; a higher value of c denotes a higher level of goodness.

The goodness () function is equivalent to:

 if (p->policy != SCHED_OTHER)

 return 1000 + p->rt_priority;

 if (p->counter == 0)

 return 0;

 if (p->mm == prev->mm)

 return p->counter + p->priority + 1;

 return p->counter + p->priority;

If the process is real-time, its goodness is set to at least 1000. If it is a conventional process that has

exhausted its quantum, its goodness is set to 0; otherwise, it is set to p->counter + p->priority.

A small bonus is given to p if it shares the address space with prev (i.e., if their process descriptors'

mm fields point to the same memory descriptor). The rationale for this bonus is that if p runs right

after prev, it will use the same page tables, hence the same memory; some of the valuable data may

still be in the hardware cache.

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

9 TESTING ENVIROMENT AND TEST CASES

In this chapter effort are made to describe how the kernel image is actually build and tested for its

correct functionality. Also given the information regarding how to execute a program and the things

that should be done to add a new program. The resources that were available while development

and testing are mentioned and it will seen how these are used to testing/hunting and debugging.

9.1 Building the Kernel Image

Figure19 Multi-step Processing of a User Program [6]

 Source
Program

Object
 Module

Load
Module

Compiler &
 Assembler

 Linker

Binary Memory
 Image

Other
 object
 modules

System
 Library

Compile
 time

Load
time

run time

 Loader

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

The above figure shows all the steps that are required to get the binary output of the kernel which is

written in many different files. Even though some of the modules in the kernel are written in

assembly code, it is written in a compiler compatible way using the macro “ASM” which allows

adding inline assembly codes inserted to C codes. All the user applications are embedded into the

image but difference is made by assigning the values in CCB registers to know the boundary

between the kernel and user programs, so that access rights are changed, i.e., kernel given super

user privileges and the rest are not.

9.2 Start-up Routine

In the startup routine in the file /kernel/boo.x (.x is used as the Makefile’s automatic cleaning will

remove all the .s/.S files, that is the reason something other than .S was used). The core when

restarts starts to execute the instruction residing at address location 0x0000H, this does mean that

the program that starts from this location has the super user privileges and can make the core to do

anything. Kernel is supposed to be a good guy, so it starts configuring all CCB (Core Control

Block) registers, so as to make sure the core restarts in the way the kernel thinks to be better. So the

things that happened here are

• The base address is used (0x10000H) and the registers which store the address of the all the

sort of handlers are assigned appropriate values of the respective handlers (Scall, interrupt

and exception handlers).

• All the interrupt modes, masks, external interrupts and co-processor interrupt registers

initialized.

• Memory bounds set for both Instruction and Data Memory are set and the access privileges

set (that is which part of the bounds can a user access and which they cannot). These is done

in the register MEM_PCONF

• Timer registers which hold the maximum number that each register can count.

• Timer configuration register used to enable and disable the hardware timers. The same

registers are configured so as to make Hardware Timer0 active and disable the Timer1;

detailed description is given in the chapter “Timing Measurement” chapter 7.

• Stack pointers and Frame pointers (register 27 (R27) and register 28 (R28) are initialized).

• Jump to main program where the rest of the initialization about process structure

initialization is done in C language and can be found in the file /kernel/main.c

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

9.3 Program Execution

The kernel has to know much about the tasks that are need to be run on the core. All the structures

are to be build about the task so that these structures are used by the kernel to update the

information regarding what each task is doing. This building of task’s structures (Process

Descriptors) is done manually in the file /kernel/main.c. A glance into this file will show that here

some structures are created for each task and the programmer’s initial knowledge about the tasks is

given to the kernel. Once this knowledge transferred, then the kernel take cares of them by updating

the structures with the relevant information.

9.3.1 Memory Requirement Limitations

It is told that all the initial information regarding all the tasks is passed to the kernel by the

programmer (section 9.3); here the data memory requirement information is also given to the

kernel. The kernel assumes that this process takes no more memory than it knew it would use. So it

reserves the specified memory, the immediate free space (unreserved to any process) would be

given to the next process asking for memory. It is important to know that the kernel doesn’t

maintain any linked list of these assigned chunks of memory neither does it offer any protection to

these boundaries (for example using some fence registers etc …). All the embedded programs that

are to be run under the CUP-OS would be written within the team with the knowledge of these

limitations and hence the operating system trusts them. Any invalid access to other processes

memory space would corrupt its data and in the worst case if the corrupted data has some Frame

Pointer or Stack Pointer value then it would make possibly make the system crash.

9.3.2 Starting Kernel and Tasks

Kernel Start point is the function maintain(), even though it is a function with return type int it

never returns, i.e., the return instruction in it is never reached. All the initialisation of all structures

is done here and the kernel at this time already knows all regarding the processes. All the start

addresses of the tasks are hand calculated and even this information is given to the kernel through

the process descriptors. task1 (first task) is selected as current process and before the kernel returns

to the user all the user registers are restored into register set 1 (user registers) along with some

registers in the super user set which are PSR, SPSR and the link register R31 (set2) along with the

control register CR0 is restored. So when RETU instruction is executed by the kernel after restoring

the registers then the PC (Program counter) jumps to the value stored in link register (appropriate

values are stored in R31 before retu instruction).

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

Figure 19: Screenshot of the ISS (Instruction Set simulator for COFFEE RISC Processor)

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

 10 Conclusions

The problems faced while starting this work which were stated at the beginning of this document

chapter 1, are checked against the different chapters and solutions suggested throughout this

document. Next, these results are summarized and final conclusions are drawn. The question

whether the suggestions in this document can be applied to other networks is briefly discussed and

finally, future development of the proposed system and the area in general, is considered.

10.1 Problem Formulation Revisited

• Definition and characterizing the real time operating system in general
o The whole of chapter 2 is dedicated for giving the real time general operating system

concepts. Also the later chapters describe the same concepts from the

implementation point of view.

• Structuring and categorizing the existing scheduling and memory security methods in real-

time operating systems.

o The algorithm used for the scheduler has been placed into categories in the section

8.5. It is important to note that there are many scheduling algorithms used in

different versions of Linux and one can find that some other algorithm could have

been efficient than the one used here, but efforts have been made to keep the codes

look very close to the uClinux even though at many situations functionality was

changed and limitations added. These limitations will be removed in the future

works.

• Detail explanation of how and where processor dependent codes are mapped to the existing

versions of the uClinux.

o The processor dependent codes come into picture only when there is switch from

user to kernel or vice versa. Device drivers ask a lot of services from the kernel and

most of them are processor and device dependent, but as there are no devices as the

moment the only place where these switches occur are at kernel entry and exit points

and the detailed explanation for this goes in chapter 6 as a whole.

• Difference in behaviour of CUP-OS to the uClinux.

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

o From the application programmer point of view, one should not find much difference

in the kernel’s behaviour except most of the system calls (kernel services) are yet to

be implemented. But from the kernel developers point of view one finds the

difference in the

 way how kernel starts the tasks, which is not automatic.

 Memory Management

This topic has been raised and explained a bit further in the chapter 9 and more

specifically in the section 9.2 where the knowledge of the kernel starts is being given

before talking more about how it is being tested. Many efforts have been made to keep

the kernel codes in the way so as to make future versions compatible with the first

version and to make it look like uClinux with less changes and adding more functions

is much easier from this point.

10.2 Results

Although the area of the Linux Kernel Development is very huge and varying, it is possible to

structure and categorize it to simplify discussions and further studies of the area. By using all the

categorization shown in chapter 2, it can be clearly understood the minimum services expected by

the kernel.

All this has aimed at fully understanding what the layer of kernel is, how to begin porting it and the

problems which were raised meanwhile are pointed and the solutions to that problems for a kernel

newbie like me, this document should be very useful in making understanding them.

The main target of this work was to have an OS layer which could do all the general purpose OS

services and should be a Linux flavoured. By Linux flavoured it is meant that the kernel to be

monolithic and an application programmer for Linux should find no differences while using this

kernel. The target has been achieved and also well tested with some programs. This is a unique

document as there is no thesis or work that mentions the starting point needed to start this work and

the problems faced during the development. Many documents were glanced, but it was difficult to

get a point to start in the big ocean of functions, it is pointed in the beginning of chapter 3, the good

starting point for this work and it would save a lot of time for the developers who would like to do

similar porting but do not know where to start.

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

Many simple and different approaches were thought and described, also the implementation steps

and the problem facing while implementation were clearly explained.

The conclusion is that, as Linux is becoming very popular for its open source nature and millions of

minds working on it to make it better, all the processors available, wants to have it working on it.

This thesis aimed to have the kernel able to do all the minimum expected services from the kernel

and at the time of this writing it was successful.

10.3 Future Works

It is already mentioned that even thought the application programmer finds no big difference while

working on CUP-OS from the uClinux; there are dissimilarities inside it from the kernel developer

point of view. The main difference is that the kernel calling system calls. Other small difference are

negligible and the future works will include the efforts to remove these dissimilarities and make as

many system calls working as possible. Also efforts will be made to make this port accepted in the

official uClinux website and make it as one of the official ports of uClinux. This is quite a lot of

work but after having reaching this stage, it feels very encouraging to see the efforts fruitful and

make the work more efficient.

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

References

[1] COFFEE RISC Core TM official website, http://coffee.tut.fi/documents.html

[2]’what is Linux?’ Linux Online, Inc., http://www.linux.org/info/index.html, March 29, 2005

[3] Oreilly Understanding the Linux Kernel, 2nd Edition, December 2002 by Daniel Bovet, Marco

Cesati

[4] S.R.Ball, Embedded Microprocessor Systems, Second edition, Butterworth-Heinemann, 2000.

[5] H.Gomaa, Software Design Methods for Concurrent and Real-time Systems, First edition,

Addison-Wesley, 1993.

[6] P.A.Laplante, Real-Time Systems Design and Analysis: An Engineer’s Handbook, Second

edition, IEEE Press, 1997.

[7] W.Stallings, Operating Systems: Internals and Design Principles, Third edition, Prentice-Hall,

1997.

[8] Chapter 11 of Embedded Linux by Craig Hollabaugh, published by Addison-Wesley.

[9] Linux Device Drivers, 2nd Edition by Alessandro Rubini, Jonathan Corbet

[10] Con Kolivas, Linux Kernel CPU Scheduler Contributor, IRC conversations, no transcript.

December 2004.

[11] Andrew S. Woodhull, Andrew S. Tanenbaum. Operating Systems Design and Implementation,

2nd Edition. Prentice-Hall, 1997.

[12] Andrew S. Tanenbaum. Modern Operating Systems, Second Edition. Prentice Hall, 2001.

[13] Linux Kernel Programming, Third Edition by Michael Beck, Harald Bohme, Mirko Dziadzka,

Ulrich Kunitz, Robert Magnus, Dirk Verworner, Claus Schroter

[14] Building Embedded Linux Systems, First Edition by Karim Yaghmour, April 2003

[15] Linux for Embedded and Real-Time Applications by Doug Abbott

[16] Beginning Linux Programming, First Edition by Neil Matthew

[17] Programming Embedded Systems in C and C ++ by Michael Barr,1999

[18] Building Embedded Linux Systems (concepts, techniques, tricks and traps) by Karim Yaghmour

 ____Real-Time Operating System for COFFEE RISC CoreTM_____

 Error! Unknown switch argument.

[19] Real-Time Concepts For Embedded Systems, Qing Li, Caroline Yao, June 2003

[20] Embedded Systems Design: An Introduction to Processes, Tools and Techniques by Arnold

Berger

[21] Embedded C by Micheal J Pont, Feb 2003

[22] Real-Time Linux on the CRIS Architecture thesis,

http://www.efd.lth.se/~d98mad/thesis_article.pdf

