
Instruction specifications(draft)

General Information

This document describes the machine instructions implemented in COFFEE RISC 1.
Descriptions are written in english. RTN (Register Transfer Notation) descriptions are
available in appendix XX (will be available soon??) The followig set of instructions is
the minimum set which every assembler should provide. With pseudo instructions the
assembly language interface can be extended (A hint to implementer).

Abbreviations used

creg : condition register, number in the range 0...7
cond : condition (see table 'Condition codings')
dreg : destination register (32 bit mode) , number in the range 0...31
sregi, sreg : source register (32 bit mode) , number in the range 0...31
dr : destination register (16 bit mode) , number in the range 0...7
sri : source register (16 bit mode) , number in the range 0...7
imm, imm1, imm2 : immediate constant, see table ‘Permitted values for immediate
constants’
cp_sreg : coprocessor source register , number in the range 0...31
cp_dreg : coprocessor destination register , number in the range 0...31

Notes about instruction definitions:

16 bit mode refers to instruction word length. Data is manipulated in 32 bit words
except with 16 bit multiplication instructions.
Syntax definition is an abstraction. The only purpose is to illustrate what an
instruction expects as input and produces as output. The syntax of an assembly
language program written for COFFEE RISC depends on the assembler and is
documented in the respective assembler manual.
If the syntax of an instruction is different in 16 bit mode than in 32 bit mode then both
syntaxes are presented: First the 32 bit version and then 16 bit version separated with
a backslash. If both syntaxes are similar (or the particular instruction is not defined in
16 bit mode) then only one is presented.
Optional parameters for conditinal execution are enclosed in brackets.
Conditional execution is not allowed in 16 bit mode.
For timing of the instructions, see appendix XX(will be available soon?? You wish!).

1

Instruction definitions

add

syntax: (cond, creg) add dreg, sreg1, sreg2/ add dr, sr

description: The contents of the source registers sregi are summed together and the
result is placed to the destination register dreg. Exception is generated

if the result exceeds 2
31

-1 or falls below -231. In 16 bit mode the
register dr is the second source and the destination.

notes: Operation is carried out using twos complement arithmetics.

addi

syntax: (cond, creg) addi dreg, sreg1, imm/ addi dr, imm

description: The immediate constant is sign extended and summed with the contents
of the source register sreg1. The result is placed to the destination
register dreg. Exception is generated if the result exceeds 231-1 or falls
below -231. In 16 bit mode the register dr is the first source register and
the destination.

notes: Operation is carried out using twos complement arithmetics.
See the permitted values for the immediate in the table 'Permitted
values for immediate constants'.

addiu

syntax: (cond, creg) addiu dreg, sreg1, imm/ addiu dr, imm

description: The immediate constant is zero extended and summed with the
contents of the source register sreg1. The result is placed to the
destination register dreg. Overflow is ignored. In 16 bit mode the
register dr is the first source register and the destination.

flags: Z, N, C (creg0)

notes: The register operand can also be negative even though the instruction is
supposed to be 'add with immediate, unsigned operands'. The only
difference to addi is that possible overflow condition is ignored. In
general addition procedure is exactly the same for both kinds of
operands (2C or unsigned) only the result is interpreted differently (in
this case by the programmer or compiler). Flags are set as expected
when using 2C arithmetic. See the permitted values for the immediate
in the table 'Permitted values for immediate constants'.

2

addu

syntax: (cond, creg) addu dreg, sreg1, sreg2/addu dr, sr

description: The contents of the source registers sregi are summed together and the
result is placed to the destination register dreg.Overflow is ignored. In
16 bit mode the register dr is the second source and the destination.

flags: C, N, Z (CREG 0)

notes: Addition wider than 32 bits can be carried out as follows: Add
the lower 32 bits with addu and add one to the upper 32 bits if carry
was set in condition register creg0 as a result of the first addition. The
register operands can also be negative even though the instruction is
supposed to be 'add, unsigned operands'. The only difference to add is
that possible overflow condition is ignored. In general addition
procedure is exactly the same for both kinds of operands (2C or
unsigned) only the result is interpreted differently (in this case by the
programmer or compiler). Flags are set as expected when using 2C
arithmetic.

and

syntax: (cond, creg) and dreg, sreg1, sreg2/and dr, sr

description: Bitwise Boolean AND operation is performed to the contents of the
source registers sregi. The result is placed to the destination register
dreg.In 16 bit mode the register dr is the second source and the
destination.

andi

syntax: (cond, creg) andi dreg, sreg1, imm/andi dr, imm

description: The immediate constant is zero extended. Bitwise Boolean AND
operation is performed to the extended immediate and the contents of
the source register sreg1. The result is placed to the destination register
dreg. In 16 bit mode the register dr is the register source and the
destination.

notes: See the permitted values for the immediate in the table 'Permitted
values for immediate constants'.

3

bc

syntax: bc creg, imm/bc imm

description: If the carry flag in the condition register creg is high, program
execution branches to target address specified by the immediate imm.
The target address is calculated as follows: The immediate offset imm
is shifted left by one bit and sign extended. The sign extended offset is
added to the contents of the program counter PC. In 16 bit mode the
condition register used is allways creg0

notes: This instruction cannot be executed contitionally. The
instruction following this instrcution is always executed (branch slot).
The branch offset is calculated relative to the instruction in the slot. See
the permitted values for the immediate in the table 'Permitted values for
immediate constants'.

begt

syntax: begt creg, imm/begt imm

description: If the flags in the condition register creg indicate that the condition eqt
(equal or greater than) is true, program execution branches to target
address specified by the immediate imm. The target address is
calculated as follows: The immediate offset imm is shifted left by one
bit and sign extended. The sign extended offset is added to the contents
of the program counter PC. In 16 bit mode the condition register used
is allways creg0

notes: This instruction cannot be executed contitionally. The
instruction following this instrcution is always executed (branch slot).
The branch offset is calculated relative to the instruction in the slot. See
the permitted values for the immediate in the table 'Permitted values for
immediate constants'.

belt
syntax: belt creg, imm/belt imm

description: If the flags in the condition register creg indicate that the condition elt
(equal or less than) is true, program execution branches to target
address specified by the immediate imm. The target address is
calculated as follows: The immediate offset imm is shifted left by one
bit and sign extended. The sign extended offset is added to the contents
of the program counter PC. In 16 bit mode the condition register used
is allways creg0

4

notes: This instruction cannot be executed contitionally. The
instruction following this instrcution is always executed (branch slot).
The branch offset is calculated relative to the instruction in the slot. See
the permitted values for the immediate in the table 'Permitted values for
immediate constants'.

beq

syntax: beq creg, imm/beq imm

description: If the flags in the condition register creg indicate that the condition eq
(equal) is true, program execution branches to target address specified
by the immediate imm. The target address is calculated as follows: The
immediate offset imm is shifted left by one bit and sign extended. The
sign extended offset is added to the contents of the program counter
PC. In 16 bit mode the condition register used is allways creg0

notes: This instruction cannot be executed contitionally. The
instruction following this instrcution is always executed (branch slot).
The branch offset is calculated relative to the instruction in the slot. See
the permitted values for the immediate in the table 'Permitted values for
immediate constants'.

bgt

syntax: bgt creg, imm/bgt imm

description: If the flags in the condition register creg indicate that the condition gt
(greater than) is true, program execution branches to target address
specified by the immediate imm. The target address is calculated as
follows: The immediate offset imm is shifted left by one bit and sign
extended. The sign extended offset is added to the contents of the
program counter PC. In 16 bit mode the condition register used is
allways creg0

notes: This instruction cannot be executed contitionally. The
instruction following this instrcution is always executed (branch slot).
The branch offset is calculated relative to the instruction in the slot. See
the permitted values for the immediate in the table 'Permitted values for
immediate constants'.

5

blt

syntax: blt creg, imm/blt imm

description: If the flags in the condition register creg indicate that the condition lt
(less than) is true, program execution branches to target address
specified by the immediate imm. The target address is calculated as
follows: The immediate offset imm is shifted left by one bit and sign
extended. The sign extended offset is added to the contents of the
program counter PC. In 16 bit mode the condition register used is
allways creg0

notes: This instruction cannot be executed contitionally. The
instruction following this instrcution is always executed (branch slot).
The branch offset is calculated relative to the instruction in the slot. See
the permitted values for the immediate in the table 'Permitted values for
immediate constants'.

bne

syntax: bne creg, imm/bne imm

description: If the flags in the condition register creg indicate that the condition ne
(not equal) is true, program execution branches to target address
specified by the immediate imm. The target address is calculated as
follows: The immediate offset imm is shifted left by one bit and sign
extended. The sign extended offset is added to the contents of the
program counter PC. In 16 bit mode the condition register used is
allways creg0

notes: This instruction cannot be executed contitionally. The instruction
following this instrcution is always executed (branch slot). The branch
offset is calculated relative to the instruction in the slot. See the
permitted values for the immediate in the table 'Permitted values for
immediate constants'.

6

chrs

syntax: chrs imm

description: Specifies which register set is used for reading or writing. The source
register(s) and the destination register doesn't have to reside in the
same set. The register sets to be used are specified by the immediate
imm according to the following table:

imm write read
0 (00b) set 1 (user set) set 1 (user set)
1 (01b) set 1 (user set) set 2 (super user set)
2 (10b) Set 2 (super user set) set 1 (user set)
3 (11b) Set 2 (super user set) set 2 (super user set)

notes: When execution in the super user mode begins the default register set
for reading and writing is the super user set (set 2). When returning
back to the user mode the default register set is the user set (set 1). This
command is allowed only in super user mode. An exception is
generated on an attempt to use this command in user mode. As a result,
the user cannot see the register set intended only for super user. Not
allowed to be executed conditionally.

cmp

syntax: cmp creg, sreg1, sreg2/cmp sr1, sr2

description: The contents of the source registers sregi/sri are compared as if they
were signed numbers. The operation is logically done by subtracting
the contents of sreg2/sr2 from the contents of sreg1/sr1. Flags N, Z
and C are set or cleared accordingly and saved to the condition register
creg. In 16 bit mode the condition register is allways creg0.

flags: N, Z, C

notes: The logical subtraction sreg1- sreg2/sr1 - sr2 cannot
over/underflow. This instruction cannot be executed contitionally.

7

cmpi

syntax: cmpi creg, sreg1, imm/cmpi sr, imm

description: The immediate constant imm is sign extended and compared to the
contents of the source register sreg1/sr1 as if they were signed
numbers. The operation is logically done by subtracting the immediate
imm from the contents of sreg1/sr1. Flags N, Z and C are set or cleared
accordingly and saved to the condition register creg. In 16 bit mode the
condition register is allways creg0.

flags: N, Z, C

notes: The logical subtraction sreg1- imm/sr - imm cannot over/underflow.
This instruction cannot be executed contitionally. See the permitted
values for the immediate in the table 'Permitted values for immediate
constants'.

conb

syntax: (cond, creg) conb dreg, sreg1, sreg2/conb dr, sr

description: Concatenates the least signicant bytes from the source registers to form
a halfword. The least significant byte from the register sreg1 becomes
the most significant byte of the halfword and the least significant byte
from the register sreg2 becomes the least significant byte of the
halfword. The resulting halfword is saved to the destination register
dreg. The upper halword of the result is filled with zeros. In 16 bit
mode dr corresponds to the second source register sreg2 (and the
destination) and sr corresponds to sreg1.

notes: Note that ordering of operands is different in 16 bit mode from that of
32 bit mode.

conh

syntax: (cond, creg) conh dreg, sreg1, sreg2/conh dr, sr

description: Concatenates the least signicant halfwords from the source registers to
form a word. The least significant halfword from the register sreg1
becomes the most significant halfword of the word and the least
significant halfword from the register sreg2 becomes the least
significant halfword of the word. The resulting word is saved to the
destination register dreg. In 16 bit mode dr corresponds to the second
source register sreg2 (and the destination) and sr corresponds to sreg1.

8

notes: Note that ordering of operands is different in 16 bit mode from
that of 32 bit mode.

cop

syntax: cop imm1, imm2 (Coprocessor Operation)

description: Moves the immediate imm2(instruction word of the coprocessor in
question) to coprocessor number imm1. The immediate imm1 specifies
one of four possible coprocessors with values 0, 1, 2 or 3. The length of
the imm2 is 24 bits.

notes: Can be used only in 32 bit mode. This instruction cannot be
executed contitionally. See coprocessor interface.

di

syntax: di

description: Disables maskable interrupts.

notes: Not permitted to be executed conditionally. See 'Interrupts and
exceptions' for definitions and details

ei

syntax: ei

description: Enables maskable interrupts.

notes: Not permitted to be executed conditionally. See 'Interrupts and
exceptions' for definitions and details

9

exb

syntax: (cond, creg) exb dreg, sreg, imm

description: Extracts the byte specified by the immediate imm from the source
register sreg/sr and places it to the least significant end of the
destination register dreg/dr. The upper three bytes in the destination
register are cleared. The extracted byte is specified according to the
following table.

High end byte3 byte2 byte1 byte0 sreg

imm byte
0 byte0
1 byte1
2 byte2
3 byte3
other undefined

exbf

syntax: (cond, creg) exbf dreg, sreg1, sreg2/exbf dr, sr

description: Operates like exbfi, but the eleven bits defining the extracted field are
read from the least significant end of the source register sreg2. In the
16 bit mode dr is the second source and the destination.

notes: Example.
Suppose that a variable length bitfield should be extracted from register
R0 (could be for example a sub address field in a message frame).
Assume that the length of the bitfield of interest is contained in register
R1 and the lsb position is in register R2. The following code could be
used to extract the bitfield to R3:

slli R2, R2, 6
or R2, R2, R1
exbf R3, R0, R2

See also exbfi.

10

exbfi

syntax: exbfi dreg, sreg1, imm

description: Extracts a bitfield of arbitrary length and position from the source
register sreg1 and places it to the low end of the destination register
dreg. Bitfield length and position are defined by the immediate imm as
follows: Six most significant bits of the immediate define the length of
the bitfield as x, where x is an unsigned integer formed by those six
bits. Five last significant bits of the immediate imm specify the LSB
position of the extracted bitfield in the source register. The total length
of the immediate is eleven bits. If the extracted bitfield is shorter than
32 bits, the extra bit positions in the destination register are filled with
zeros.

notes: Can be used only in 32 bit mode. This instruction cannot be executed
contitionally.
Example.
 Extracting the field marked ‘FIELD’ from the source register:

F I E L D

...15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

x = 5 (000101) and LSB position = 10 (01010) => imm =
00010101010b = AAh

exh

syntax: (cond, creg) exh dreg, sreg1, imm

description: Extracts the halfword specified by the immediate imm from the source
register sreg1/sr and places it to the least significant end of the
destination register dreg/dr. The upper halfword in the destination
register is cleared. If imm = 0, then the least significant halfword is
extracted, otherwise the most significant halfword is extracted.

jal

syntax: jal imm

description: Program execution branches to target address specified by the
immediate imm. The target address is calculated as follows: The
immediate offset imm is shifted left by one bit and sign extended. The
sign extended offset is added to the contents of the program counter

11

PC. Link address is saved to register R31/SR31. The link address is the
address of the next instrucion after branch slot.

notes: This instruction cannot be executed contitionally. The instruction
following this instrcution is always executed (branch slot). The jump
offset is calculated relative to the instruction in the slot. See the
permitted values for the immediate in the table ‘Permitted values for
immediate constants’.

jalr

syntax: (cond, creg) jalr sreg1

description: Program execution branches to target address specified by the contents
of the source register sreg1/sr. Link address is saved to register
R31/SR31. The link address is the address of the next instrucion after
branch slot.

notes: The instruction following this instrcution is always executed (branch
slot). Conditional jumps (branches) which can reach the whole address
space can be synthesized by executing this instruction conditinally.

jmp

syntax: jmp imm

description: Program execution branches to target address specified by the
immediate imm. The target address is calculated as follows: The
immediate offset imm is shifted left by one bit and sign extended. The
sign extended offset is added to the contents of the program counter
PC.

notes: This instruction cannot be executed contitionally. The instruction
following this instrcution is always executed (branch slot). The jump
offset is calculated relative to the instruction in the slot. See the
permitted values for the immediate in the table ‘Permitted values for
immediate constants’.

12

jmpr

syntax: (cond, creg) jmpr sreg1

description: Program execution branches to target address specified by the contents
of the source register sreg1/sr.

notes: The instruction following this instrcution is always executed (branch
slot). Conditional jumps (branches) which can reach the whole address
space can be synthesized by executing this instruction conditinally.

ld

syntax: (cond, creg) ld dreg, sreg1, imm

description: Loads a 32 bit data word from memory to the destination register
dreg/dr. The address of the data is calculated as follows: The
immediate offset imm is sign extended and added to the contents of the
source register sreg1/sr. Two least significant bits of the resulting
address are ignored and always driven low, so the data is expected to
be aligned to word boundary.

notes: The result of the address calculation doesn’t have to be aligned to word
boundary. The two least significant bits can be used for example as
byte index. See exb instruction. See the permitted values for the
immediate in the table ‘Permitted values for immediate constants’.

lli

syntax: lli dreg, imm

description: Loads the lower halfword of the destination register dreg with the
immediate imm. The upper half of the destination register is cleared.

notes: Can be used only in 32 bit mode. This instruction cannot be executed
contitionally. See the permitted values for the immediate in the table
‘Permitted values for immediate constants’.

13

lui

syntax: lui dreg, imm

description: Loads the upper halfword of the destination register dreg with the
immediate imm. The lower half of the destination register is cleared.

notes: Can be used only in 32 bit mode. This instruction cannot be
executed contitionally. See the permitted values for the immediate in
the table ‘Permitted values for immediate constants’.

mov

syntax: (cond, creg) mov dreg, sreg1

description: Copies the contents of the source register sreg1/sr to the destination
register dreg/dr.

movcfc

syntax: (cond, creg) movcfc imm, dreg

description: Copies the contents of the status/control register of the coprocessor
number imm to the destination register dreg/dr. The immediate imm is
used to specify one of the four possible coprocessors: 0, 1, 2 or 3.

notes: This command is equivalent to movdfc imm, dreg, 0. See
‘Coprocessor Interface’.

movctc

syntax: (cond, creg) movctc imm, sreg1

description: Copies the contents of the source register sreg1/sr to the coprocessor
control/status register. The immediate imm is used to specify one of the
four possible coprocessors: 0, 1, 2 or 3.

notes: This command is equivalent to movdtc imm, 0, sreg1. See
‘Coprocessor Interface’.

14

movdfc

syntax: (cond, creg) movdfc imm, dreg, cp_sreg

description: Copies the contents of one of the registers in the coprocessor number
imm to the destination register dreg/dr. The immediate imm is used to
specify one of the four possible coprocessors: 0, 1, 2 or 3. Cp_reg is an
index to the coprocessor register file.

notes: See ‘Coprocessor Interface’.

movdtc

syntax: (cond, creg) movdtc imm, cp_dreg, sreg1

description: Copies the contents of the source register sreg1/sr to the coprocessor
register cp_dreg. The immediate imm is used to specify one of the four
possible coprocessors: 0, 1, 2 or 3.

notes: See ‘Coprocessor Interface’.

mulhi

syntax: (cond, creg) mulhi dreg

description: Returns the upper 32 bits of a 64 bit product based on the previous
instruction which has to be one of the instructions mulu, muls, muli or
mulus.

notes: See also mulu, muli, muls ja mulus.

muli

syntax: (cond, creg) muli dreg, sreg1, imm/muli dr, imm

description: Multiplies the contents of the source register sreg1 with the sign
extended immediate imm and places the result to the destination
register dreg. The operands are assumed to be signed integers (2C). In
16 bit mode dr is the source and the destination register.

15

notes: See mulhi for recovering the upper 32 bits of a product longer than 32
bits. See the permitted values for the immediate in the table ‘Permitted
values for immediate constants’.

muls

syntax: (cond, creg) muls dreg, sreg1, sreg2/muls dr, sr

description: Multiplies the contents of the source register sreg1 with the source
register sreg2 and places the lower 32 bits of the result to the
destination register dreg. The operands are assumed to be signed
integers (2C). In 16 bit mode dr is the second source register and the
destination.

notes: See mulhi for recovering the upper 32 bits of a product longer than 32
bits.

muls_16

syntax: (cond, creg) muls_16 dreg, sreg1, sreg2/muls_16 dr, sr

description: Multiplies the lower halfword of the source register sreg1 with the
lower halfword of the source register sreg2 and places the result to the
destination register dreg. The operands are assumed to be signed
integers (2C). In 16 bit mode dr is the second source register and the
destination.

mulu

syntax: (cond, creg) mulu dreg, sreg1, sreg2/mulu dr, sr

description: Multiplies the contents of the source register sreg1 with the source
register sreg2 and places the lower 32 bits of the result to the
destination register dreg. The operands are assumed to be unsigned
integers). In 16 bit mode dr is the second source register and the
destination.

notes: See mulhi for recovering the upper 32 bits of a product longer
than 32 bits.

16

mulu_16

syntax: (cond, creg) mulu_16 dreg, sreg1, sreg2/mulu_16 dr, sr

description: Multiplies the lower halfword of the source register sreg1 with the
lower halfword of the source register sreg2 and places the result to the
destination register dreg. The operands are assumed to be unsigned
integers. In 16 bit mode dr is the second source register and the
destination.

mulus

syntax: (cond, creg) mulus dreg, sreg1, sreg2/mulus dr, sr

description: Multiplies the contents of the source register sreg1 with the source
register sreg2 and places the lower 32 bits of the result to the
destination register dreg. The operand in register sreg1 is assumed to
be an unsigned integer and the operand in register sreg2 is assumed to
be a signed integer. In 16 bit mode dr is the second source register and
the destination.

notes: See mulhi for recovering the upper 32 bits of a product longer than 32
bits.

mulus_16

syntax: (cond, creg) mulus_16 dreg, sreg1, sreg2/mulus_16 dr, sr

description: Multiplies the lower halfword of the source register sreg1 with the
lower halfword of the source register sreg2 and places the result to the
destination register dreg. The operand in register sreg1 is assumed to
be an unsigned integer and the operand in register sreg2 is assumed to
be a signed integer. In 16 bit mode dr is the second source register and
the destination.

nop
syntax: nop

description: Idle command that does not alter the state of the processor.

notes: See the list of instructions which require a succeeding nop. This
instruction cannot be executed conditionally (even if it could it
wouldn’t have any effect anyway).

17

not

syntax: (cond, creg) not dreg, sreg1

description: Performs a bitwise Boolean NOT operation to the contents of the
source register sreg1/sr and places the result to the destination register
dreg/dr.

or

syntax: (cond, creg) or dreg, sreg1, sreg2/or dr, sr

description: Performs a bitwise Boolean OR operation to the contents of the source
registers sregi and places the result to the destination register dreg. In
16 bit mode dr is the second source and the destination register.

ori

syntax: (cond, creg) ori dreg, sreg1, imm/ ori dr, imm

description: Performs a bitwise Boolean OR operation to the contents of the source
register sreg1 and zero extented immediate imm. The result is placed to
the destination register dreg. In 16 bit mode dr is the source and the
destination register.

notes: See the permitted values for the immediate in the table ‘Permitted
values for immediate constants’.

rcon

syntax: rcon sreg1

description: Restores the contents of all the condition registers from the source
register sreg1.

notes: This instruction is not allowed to be executed conditionally. See
programming hints.

18

reti

syntax: reti

description: Used for returning from an interrupt service routine. Loads PC and
PSR from the hardware stack.

notes: See programming hints. Not allowed to be executed conditionally. The
instrcution following reti allways has to be a nop!

retu

syntax: retu

description: Used for returning or moving from system code/super user mode to
user mode. Execution of user code starts from a address in register
SR31. Status flags are copied from the register PSR_2. (They should be
set appropriately before issuing retu).

notes: See scall. See programming hints. Not allowed to be executed
conditionally. The instrcution following retu allways has to be a
nop!

scall

syntax: (cond, creg) scall

description: System call transfers the processor to the super user mode and
execution of instructions begins at address sys_addr_c. The link
address is saved in to the register SR31. The link address is the address
of the instruction following nop (see notes below). The state of the
processor before scall is copied to the register PSR_2.

notes: When transferring the control to super user code the default settings are

32 bit mode, interrupts disabled and super user register set (both read
and write). As with branches and jumps also this instruction has a
branch slot which in this case has to be filled with a nop instruction.
See retu. See also configuring the core before synthesis:
configuration_pkg.vhd

19

scon

syntax: scon dreg

description: Saves the contents of all the condition registers to the (low end of)
destination register dreg.

notes: This instruction is not allowed to be executed conditionally. See
programming hints.

sext

syntax: (cond, creg) sext dreg, sreg1, sreg2/sext dr, sr

description: Works as sexti, but the position of the sign bit is calculated by using
the five least significant bits from the source register sreg2. In 16 bit
mode dr is the second source register and the destination.

notes: See also sexti.

sexti

syntax: (cond, creg) sexti dreg, sreg, imm/sexti dr, imm

description: Sign extends the operand in the source register sreg and places the
result to the destination register dreg. The position of the sign bit is
specified by the immediate imm (0 corresponds to LSB and 31
corresponds to MSB). In 16 bit mode dr is the source register and the
destination.

notes: See the permitted values for the immediate in the table ‘Permitted
values for immediate constants’.

sll

syntax: (cond, creg) sll dreg, sreg1, sreg2/sll dr sr

description: Performs the logical shift left to the contents of the source register
sreg1/sr and places the result to the destination register dreg/dr. The
six least significant bits in the source register sreg2 specify the amount
of shift. In 16 bit mode dr is the second source register and the
destination.

20

notes: If the unsigned integer formed by the six least significant bits in
the source register sreg2 imply a shift of more than 32 positions then
the result will be a shift of 32 positions (which is zero).

slli

syntax: (cond, creg) slli dreg, sreg1, imm/slli dr, imm

description: Performs the logical shift left to the contents of the source register
sreg1 and places the result to the destination register dreg. The
immediate imm specifies the amount of shift. In 16 bit mode dr is the
source register and the destination.

notes: See the permitted values for the immediate in the table ‘Permitted
values for immediate constants’.

sra

syntax: (cond, creg) sra dreg, sreg1, sreg2/sra dr sr

description: Performs the arithmetic shift right to the contents of the source register
sreg1/sr and places the result to the destination register dreg/dr. The
six least significant bits in the source register sreg2 specify the amount
of shift. In 16 bit mode dr is the second source register and the
destination.

notes: If the unsigned integer formed by the six least significant bits in
the source register sreg2 imply a shift of more than 32 positions then
the result will be a shift of 32 positions.

srai

syntax: (cond, creg) srai dreg, sreg1, imm/srai dr, imm

description: Performs the arithmetic shift right to the contents of the source register
sreg1 and places the result to the destination register dreg. The
immediate imm specifies the amount of shift. In 16 bit mode dr is the
source register and the destination.

notes: See the permitted values for the immediate in the table ‘Permitted
values for immediate constants’.

21

srl

syntax: (cond, creg) srl dreg, sreg1, sreg2/srl dr sr

description: Performs the logical shift right to the contents of the source register
sreg1/sr and places the result to the destination register dreg/dr. The
six least significant bits in the source register sreg2 specify the amount
of shift. In 16 bit mode dr is the second source register and the
destination.

notes: If the unsigned integer formed by the six least significant bits in
the source register sreg2 imply a shift of more than 32 positions then
the result will be a shift of 32 positions.

srli

syntax: (cond, creg) srli dreg, sreg1, imm/srli dr, imm

description: Performs the logical shift right to the contents of the source register
sreg1 and places the result to the destination register dreg. The
immediate imm specifies the amount of shift. In 16 bit mode dr is the
source register and the destination.

notes: See the permitted values for the immediate in the table ‘Permitted
values for immediate constants’.

st

syntax: (cond, creg) st sreg2, sreg1, imm

description: Stores the data in the source register sreg2/sr2 to memory location
whos address is calculated as follows: The immediate offset imm is
sign extended and added to the contents of the source register
sreg1/sr1.

notes: Two least significant bits of the data address are always driven low
independent of the address calculation, so the data is aligned to word
boundary. See ld. See the permitted values for the immediate in the
table ‘Permitted values for immediate constants’.

22

sub

syntax: (cond, creg) sub dreg, sreg1, sreg2/sub dr, sr

description: The contents of the source register sreg2 is subtracted from the
contents of the source register sreg1 and the result is placed to the
destination register dreg. Exception is generated if the result exceeds
231-1 or falls below -231. In 16 bit mode dr is the second source register
and the destination.

notes: Operation is carried out using twos complement arithmetics

subu

syntax: (cond, creg) subu dreg, sreg1, sreg2/subu dr, sr

description: The contents of the source register sreg2 is subtracted from the
contents of the source register sreg1 and the result is placed to the
destination register dreg. In 16 bit mode dr is the second source
register and the destination.

flags: Z, C, N

notes: Over/underflow is ignored. See programming hints

swm

syntax: swm imm

description: Changes the instruction length mode (16bit ? 32bit). The value of the
immediate imm specifies the mode: imm = 16 => switch to 16bit mode,
imm = 32 => switch to 32 bit mode.

flags: IL

notes: This instruction is not allowed to be executed conditionally. See the
permitted values for the immediate in the table ‘Permitted values for
immediate constants’. The instrcution following swm allways has to
be a nop!

23

trap

syntax: trap

description: Generates a software trap. Execution is started at the address of
exception handlind routine excep_addr_c. The address of the trap
instruction is saved in the EPC register.

notes: This instruction is not allowed to be executed conditionally. See
programming hints. This instruction could be used to fill unused
memory to catch programs which ‘loose control’.

xor

syntax: (cond, creg) xor dreg, sreg1, sreg2/xor dr, sr

description: Performs a bitwise XOR operation to the contents of the source
registers sreg1 and sreg2. The result is placed to the destination
register dreg. In 16 bit mode the bitwise xor is performed to the
contents of dr and sr and the result is placed into dr.

24

instruction
Permitted values for imm

16 bit 32 bit
conditional unconditional

notes

addi -26 ... 26-1 -28 ... 28-1 -214 ... 214-1
addiu 0 ... 27-1 0 ... 29-1 0 ... 215-1
andi 0 ... 27-1 0 ... 29-1 0 ... 215-1
bxx 1 -29 ... 29-1 - -221 ... 221-1
chrs 0...3 - 0..3
cmpi -26 ... 26-1 - -216 ... 216-1

cop (imm1) 2 - - 0...3 Only 32 bit mode
exb 0...3 0..3 0...3

exbfi - - 0...211-1 Only 32 bit mode
exh 0 or 1 0 or 1 0 or 1
jal -29 ... 29-1 - -224 ... 224-1

jmp -29 ... 29-1 - -224 ... 224-1
ld -8...7 -28 ... 28-1 -214 ... 214-1
lli - - 0 ... 216-1

(or
-215... 215-1)

Only 32 bit mode

lui - - 0 ... 216-1
(or

-215... 215-1)

Only 32 bit mode

movcfc/
movdfc 2

0...3
(imm1)

0..3
(imm1)

0..3
(imm1)

movctc/
movdtc 2

0...3
(imm1)

0..3
(imm1)

0..3
(imm1)

muli -26 ... 26-1 -28 ... 28-1 -214 ... 214-1
ori 0 ... 27-1 0 ... 29-1 0 ... 215-1

sexti 0...31 0...31 0...31
slli 0...32 0...32 0...32
srai 0...32 0...32 0...32
srli 0...32 0...32 0...32
st -8...7 -28 ... 28-1 -214 ... 214-1

swm3 16 or 32 - 16 or 32
Table 1, Permitted values for immediate constants.

1 xx is one of the following: c, blt, bne, bgt, beq, begt or belt
2 imm1 is a value in the range 0...3. Imm2 is an instruction word recognized by a
coprocessor. See the definition of the instruction cop.
3 Actually only one bit (bit with weight 32) is checked, so other values are also
acceptable. It is recommended though that assembler only allows values in the table.

25

