
Processor Operating Modes

16 bit mode and 32 bit decoding modes

16 bit mode refers to length of the instruction word. When in this mode, core expects
to get instruction words encoded in 16 bits. Mode can be switched on the fly using
swm –instruction. Of course when running actual code, the encoding really has to
change after swm –instruction (See document instruction execution cycle times).

Limitations in 16 bit mode

- only 8 registers per set available: registers 24...31 mapped as registers 0...7
- Conditional execution is not available
- Only one condition register(CR0) in use
- Immediate constants are shorter, see instruction specifications.
- Instructions lui, lli, exbfi and cop not available (available as pseudo –operations if

supported by assembler).
- 2nd source register and destination register shared.

Super user mode
The core can operate in super user –mode or user –mode. In super user –mode, core
can access the whole memory space and both register banks. In user –mode, access to
protected memory areas (software configurable) is denied and only 1st register bank is
accessible. It’s possible to switch from super user -mode to user –mode but not vice
versa, except using scall –instruction which transfers execution to system code.
System code entry address must be configured in startup code. Interrupt service
routines can be run in both modes. This can also be configured by startup code. Core
boots in super user –mode, which makes it possible to do the necessary configurations
before starting application in user –mode.

Resetting the processor
After powering up the core, rst_x pin should be pulsed low (clock has to be stable) to
set the core in correct state. If boot address selection is enabled (boot_sel –pin pulled
high), boot address should be driven to data bus simultaneously with rst_x –signal. If
boot address selection is disabled, core will boot at address 0x00000000h. Normal
operation will start two clock cycles after the rising edge of the rst_x –signal. See
document COFFEE_interface –about signal timing at reset.

Defaults after reset and boot procedure

Core will boot in super user and 32 bit –modes. Interrupts are disabled. A typical boot
procedure would be to execute assembly written boot code which sets all CCB
registers to suitable values and switches to user –mode by executing retu –instruction.
See instruction specifications. See ‘COFFEE_register’ about reset values of
configuration registers.

About configuring the core

Several features of the core can be configured via the core configuration block (CCB)
which is a memory mapped register bank. When writing a new value to a
configuration register, the new value will be valid when the instruction accessing
CCB is in stage 5 of the pipeline. It follows that, if some configurations affect the
execution of some instructions, or some configurations should be valid, when
executing certain instructions, one has to make sure that there is enough instructions
between the ones accessing CCB and dependent instructions. These can be nop –
instructions or other instructions which do not depend on values of the configuration
registers. Table below shows few examples of situations where it is essential to have
few instructions between a CCB write and an instruction depending on the
configuration made. If you’re not sure about the number of ‘guard’ –instructions, use
four.

instruction purpose notes Dependency
st R1, R0, 0h Remapping CCB to new

address.
Assume R0 contains
address of CCB_BASE –
register and R1 contains a
new address for CCB.

addi R0, R1, 1h incrementing the new
address of CCB. R0
should point now to
CCB_END.

‘guard’ instruction

st R2, R0, 0h Configuring the size of
configuration block
itself (internal +
external blocks)

Assuming R2 contains an
address to be written to
CCB_END.

The 2nd st –instruction
needs the value of
CCB_BASE in stage 3 of
the pipeline. CCB_BASE
is valid when the 1st st –
instruction is in stage 5 of
the pipeline => There
needs to be one
instruction between the
stores. In this case it is
addi.

instruction purpose notes Dependency
st R1, R0, 0h Set an interrupt vector. Assume R0 contains

address of
EXT_INT0_VEC
 and R1 points to interrupt
service routine.

nop
nop

idle instructions
(‘guard’ instructions)

Could use some other
‘useful’ instructions

ei Enable interrupts

Interrupt vector will be
valid when st –instruction
has proceeded to stage 5
of the pipeline. Interrupts
will be enabled when ei –
instruction reaches stage
2 of the pipeline. Need to
fill stages 3 and 4 to be
safe.

instruction purpose notes Dependency
st R1, R0, 0h Configure register

translation for
coprocessor access.

Assume R0 contains
address of
CREG_INDX_I and R1
valid configuration.

nop
nop

idle instructions
(‘guard’ instructions)

Could use some other
‘useful’ instructions

cop sqr(R2, R15) Transfer an instruction
word to coprocessor for
execution

Configuration will be
valid when st –instruction
has proceeded to stage 5
of the pipeline.
Configuration is needed
when cop –instruction
reaches stage 2 of the
pipeline. Need to fill
stages 3 and 4 to be safe.

	Processor Operating Modes

