
Instruction execution cycle times 
 
General 
 
Address or data available in stage X means that it has been calculated during the previous cycle(s) and can 
be used as input to stage X. In all cases data will be written to register file during stage 5. 
 
In stage X means that the instruction in question has propagated to stage X even though the instruction 
might not be ‘active’ anymore, that is, it does not change the state of the registers nor outputs of the core. 
For example all jumps basicly evaluate an address in stage 1 which is availabe in stage 2. Some of them 
save a link address, so they are active until write back stage. 
 
Cycle times below are for the ideal case of zero pipeline stall cycles. Pipeline stalls are mainly caused by 
cache memory misses and data dependencies. In ideal conditions the throughput of pipeline is one 
instruction per cycle. 
 
Other instructions on the pipeline can use the data/flags as soon as it’s ready (column 5 in table 2). 
 
 
Table 1, Stage definitions 
n operations notes 
0 - instruction address increment 

-  current instruction  address check (calculated previously) 
-  instruction fetch(from the current address). 

 

1 - 16bit to 32bit instuction extending 
- immediate operand extending 
- jump address calculation 
- decoding for control 1(CCU) 
- operand forwarding (ALU operands) 
- register operand fetch & operand selection 
- execution condition check (jumps and others). Includes 

condition register bank read. 
- evaluation of new status flags (PSR) 
- instruction check (unused opcodes, mode dependent 

instructions) 

Execution condition and branch 
condition is checked(not 
evaluated) in stage 1 ! 
 

2 - coprocessor operand selection  
- forwarding of data latched from memory bus 
- ALU execution, step 1 
- address calculation for data memory access 
- flag evaluation (Z, N, C) 

 

3 - coprocessor access 
- condition register bank write (with scon, read)  
- ALU execution, step 2 
- data memory address checks: user, CCB and overflow. 
- data forwarding for memory access(st –instruction only) 

CR has internal forwarding. Flags 
calculated in the previous cycle 
can be seen directly on output of 
CR if needed. Special output for 
scon –instruction, all_out, does 
not have forwarding. 

4 - cor control block (CCB)access 
- data memory access 
- ALU execution, step 3 

 

5 - register write back Note that register file RF has 
internal forward control which 
means that data calculated during 
stage 4 is visible directly to stage 
1 if needed 

 



Instruction timing 
 
Table 2, Instruction cycle timing 

ALU 
cycles 

latency 
from 
instruction 
fetch to 
data 
available 

Address 
on bus 

Address 
check 
complete 

Data Condition 
flags  

PSR 
flags 

instruction 

cycle count ready/available in stage 
add   1 3 - - 3 3 - 
addi  1 3 - - 3 3 - 
addiu  1 3 - - 3 3 - 
addu  1 3 - - 3 3 - 
and  1 3 - - 3 - - 
andi  1 3 - - 3 - - 
bnc  0 - 2 3 - - - 
bc  0 - 2 3 - - - 
begt  0 - 2 3 - - - 
belt  0 - 2 3 - - - 
beq  0 - 2 3 - - - 
bgt  0 - 2 3 - - - 
blt  0 - 2 3 - - - 
bne  0 - 2 3 - - - 
chrs 0 - - - - - 2 
cmp  1 - - - - 3 - 
cmpi 1 - - - - 3 - 
conb  1 3 - - 3 - - 
conh  1 3 - - 3 - - 
cop 0 - 3 6 - - - - 
di 0 - - - - - 2 
ei  0 - - - - - 2 
exb   1 3 - - 3 - - 
exbf 1 3 - - 3 - - 
exbfi  1 3 - - 3 - - 
exh   1 3 - - 3 - - 
jal 0 3 5 2 3 3 5 - - 
jalr 0 3 5 2 3 3 5 - - 
jmp 0 - 2 3 - - - 
jmpr 0 - 2 3 - - - 
ld 8 1 5 3 4 7 4 7 5 - - 
lli 1 3 - - 3 - - 
lui 1 3 - - 3 - - 
mov 1 1 3 - - 3 - - 
movfc 0 4 4 3 6 - 4 - - 
movtc 0 - 3 6 - - - - 
mulhi 1 2 5 - - 5 - - 
muli  3 5 - - 5 - - 
muls  3 5 - - 5 - - 
muls_16  2 4 - - 4 - - 
mulu  3 5 - - 5 - - 
mulu_16  2 4 - - 4 - - 
mulus  3 5 - - 5 - - 



mulus_16  2 4 - - 4 - - 
ALU 
cycles 

latency 
from 
instruction 
fetch to 
data 
available 

Address 
on bus 

Address 
check 
complete 

Data Condition 
flags  

PSR 
flags 

instruction 

cycle count ready/available in stage 
nop 0 - - - - - - 
not 1 3 - - 3 - - 
or  1 3 - - 3 - - 
ori  1 3 - - 3 - - 
rcon 0 - - - - 3 - 
reti  0 - 2 3 - - 2 
retu 0 - 2 3 - - 2 
scall 0 3 5 2 3 3 - 2 
scon 0 4 - - 4 - - 
sext  1 3 - - 3 - - 
sexti  1 3 - - 3 - - 
sll 1 3 - - 3 3 - 
slli  1 3 - - 3 3 - 
sra 1 3 - - 3 - - 
srai 1 3 - - 3 - - 
srl  1 3 - - 3 - - 
srli  1 3 - - 3 - - 
st 8 1 - 4 7 4 7 - - - 
sub  1 3 - - 3 3 - 
subu  1 3 - - 3 3 - 
swm 0 - - - - - 2 
trap 0 - 3 - - - - 
xor  1 3 - - 3 - - 
 
1 Data is only routed through ALU 
2 Executed in step 3 of ALU, based on data evaluated on previous cycle. 
3 Data from memory. 
4 Data from a coprocessor. 
5 Data in this case is the return address(link) to be saved to the link register. 
6 Address in this case is coprocessor index and coprocessor register index => cop register address. 
7 If address check is not passed, memory access will not take place. 
8 If address falls in range of CCB addresses, no memory access is generated. 
 



 
Program Counter update timing 
 
Program counter can be updated from various sources: 
 
- PC incrementer (normal sequential execution) 
- Jump address calculation unit (PC relative jumps) 
- Output port of the register file (jumps to absolute addresses) 
- Interrupt control unit (Interrupt vectors) 
- CCB special output ports (system calls and exceptions) 
- data bus (boot address can be read from the data bus, if enabled) 
- hardware stack (returning from an interrupt routine) 
 
The actual timing, that is, the moment when a new address can be seen on the instruction address bus, 
depends on the source. The following table summarises the timing 
 
 
 
Table 3, Instruction address timing 
Cause of change 
in program flow 

Address source Address 
calculated 

Address on bus 

pc relative jumps:  
bxx, jmp, jal 

Current PC and extended 
immediate offset from the 
instruction in stage 1 

stage 1 stage 2 

absolute  jumps: 
jmpr, jalr, retu, scall 

scall: a CCB register output 
others: a RF register output 

- stage 2 

return from an 
interrupt routine: 
reti 

hardware stack Saved to HW stack 
before switching to 

service routine. 

stage 4 

sequential increment 
1 

Current PC and PSR IL bit next address: 
stage 0 

stage 0 

switching to  
exception handler 
2 

a CCB register output 
 

- x cycles after the exception was 
signalled. 

switching to an 
interrupt handler  
2 

a CCB register output 
and external offset if used. 

- x cycles after the interrupt was 
signalled. 

reset data bus if boot_sel –signal is 
driven high, otherwise 
address is set internally to 
zero. 

- See chapter ‘timing 
specification’ in document 
COFFEE_interface. 

 
1 Stages relate to instructions: In stage 0 the program counter points to the instruction being fetched. At the 
same time, next address is calculated. When an instruction is in stage 1 the program counter points to the 
next memory location. The memory address pointed to in stage 0 was evaluated on the previous cycle. 
 
2 See document about interrupts and exceptions 
 
Note that after swm command, program counter is incremented twice with the old increment. Table 4 
below shows the correct operation. 



 
Some assumptions made to fill in the table below: 
 
- Assume START is aligned to word boundary and the processor is in 32 bit mode. 
- PC increment is calculated using previous mode, that is, the mode which was valid when the 

instruction currently in decode was fetched from memory. 
 
table 4, switching mode 

instruction in decode addr bus processor mode 
instruction 
pointed to 

address 
<= 

PC previous
mode 

current
mode 

add START START + 4  32 
sub START + 4 START + 8 32 32 
mov START + 8 START + 12 32 32 
swm START + 12 START + 16 32 32 
nop START + 16 START + 20 32 16 
nop START + 20 START + 22 16 16 
add START + 22 START + 24 16 16 
sub START + 24 START + 26 16 16 
mov START + 26 START + 28 16 16 
swm START + 28 START + 30 16 16 
nop START + 30 START + 32 16 32 
nop START + 32 START + 36 32 32 
add START + 36 START + 42 32 32 
sub START + 42 START + 46 32 32 
mov START + 46 START + 50 32 32 

Non aligned case below 
add START START + 4  32 
sub START + 4 START + 8 32 32 
mov START + 8 START + 12 32 32 
swm START + 12 START + 16 32 32 
nop START + 16 START + 20 32 16 
nop START + 20 START + 22 16 16 
add START + 22 START + 24 16 16 
sub START + 24 START + 26 16 16 

swm START + 26 START + 28 16 16 
nop START + 28 START + 30 16 32 
nop START + 30 START + 32 32 32 
add START + 32 START + 36 32 32 
sub START + 36 START + 42 32 32 
mov START + 42 START + 46 32 32 

Underlined  row shows a case where increment is two even though the processor is in 32 bit mode. In these 
cases the address is aligned by hardware. This has no impact on programmer if normal alignment rules are 
followed. 
  



 
Summa summarum: Different cases when switching mode 
 
- x refers to an arbitrary word address (address divisible by four). 
 
 
Case 1, switching from 16bit to 32bit, aligned case. 
byte address ���� x + 0 x + 1 x + 2 x + 3 
halfword address ���� x + 0 x + 2 
word address ���� x + 0 

swm nop instruction ���� 
nop - 

bits ���� 31...24 23...16 15...8 7...0 
Notes about case 1: 
 
- The last nop –instruction above can be replaced with 32 bit version filling also the empty space. 
 
Case 2, switching from 16bit to 32bit, non-aligned case. 
byte address ���� x + 0 x + 1 x + 2 x + 3 
halfword address ���� x + 0 x + 2 
word address ���� x + 0 

add swm instruction ���� 
nop nop 

bits ���� 31...24 23...16 15...8 7...0 
 
 
Case 3, switching from 32bit to 16bit. 
byte address ���� x + 0 x + 1 x + 2 x + 3 
halfword address ���� x + 0 x + 2 
word address ���� x + 0 

swm 
nop 

instruction ���� 

addi mulu 
bits ���� 31...24 23...16 15...8 7...0 
Notes about case 3: 
- the 32 bit nop can be ‘replaced’ with two 16 bit nops to get a more general rule: 

ALWAYS ADD TWO 16 BIT NOPS AFTER SWM –INSTRUCTION INDEPENDENT OF 
MODE! 



Pipeline stalls 
 
Table 5, Pipeline stall resolving 

Stall type Explanation Resolving Insert 
nops to 
stage 

Disabled 
stages 

Enabled 
stages 

stall/wait 
cycles 

icache access 
wait 

1 0 1...5 

dcache access 
wait 

- 0...5 - 

cop access wait 

Wait cycle 
counter for 
icache, dcache or 
coprocessor has a 
nonzero value in 
it. 

Wait for the 
counter in 
question to reach 
zero. Note that 
once started, a 
counter will not 
halt before zero. 

- 0...5 - 

 
 
 

1...15 

icache miss 1 0 1...5 n 
dcache miss 

There is no valid 
data in the 
requested 
address. 

Wait for the 
i_cache_miss 
/d_cache_miss 
signal to go low. 

- 0...5 - n 

flag dependency A branch 
instruction or an 
instruction 
executed 
conditionally 
needs flags which 
are not ready yet. 

Wait in stage 1 
for the flags to be 
ready. 

2 0...1 2...5 1 

ALU data 
dependency 

An instruction 
needs register 
operand(s) which 
is/are not ready 

Wait in stage 1 
until data is ready 
and can be 
forwarded. 

2 0...1 2...5 1...2 

jump address 
dependency 

a jump needs 
register data 
which is not 
ready yet. 

Wait in stage 1 
until data is ready 
and can be 
forwarded. 

2 0...1 2...5 1...3 

bus reserved ld or st –
instruction needs 
data memory bus 
but it’s reserved 
by an external 
device. 

Wait in stage 3 
(ld or st) until 
signal bus_req 
goes low  

- 0...5 - n 

atomic stall A 32 
multiplication 
instruction in 
stage 1 and icache 
access wait or 
icache miss 
active. 2 

Wait for the 
memory access to 
finish. 

2 0...1 2...5 n/1...15 

PC not writable 
stall 

A jump –
instruction needs 
to write PC but 
branch slot 
instruction is not 
fetched yet . 

Wait for the 
memory access to 
finish. 

2 0...1 2...5 n/1...15 

external stall 
request 

stall –input is 
driven high. 

wait for the stall 
signal to go low. 

- 0...5 - n 

 



1 The minimum access time for data memory, instruction memory and coprocessor access can be defined by 
software to be 1 to 16 clock cycles (1 start cycle + 0...15 wait cycles). Once an access starts it won’t be 
stopped or restarted but it can be extended if some other stalls are active AFTER the minimun access time 
set by software. This means that overlapping stalls do not extend access times. 
 
2 atomic stall has priority over icache miss or icache access wait. A 32 bit multiplication instruction 
followed by mulhi instruction is an atomic operation, that is, these instructios have to be executed together 
and cannot be separated. When waiting for the next instruction from memory we cannot know if it is mulhi 
or not, thereby we must stall stage 1. 
 
 
Number of wait bubbles caused by dependencies 
 
 
Table 6, Number of  bubbles (nops) added in case of data depencencies: 
Instruction which need register operand(s) except jmpr and jalr. 2 

Number of ALU cycles 1 
 

Position of the 
instruction 1 

1 2 3 
2 0 bubbles 1 bubbles 2 bubbles 
3 0 bubbles  0 bubbles 1 bubbles 
4 0 bubbles 0 bubbles 0 bubbles 

 
1 The instruction which the other (currently in stage 1) depends on. 
2 2nd register operand of st –instruction is ignored when checking dependencies. 
 
Table 7, Number of  bubbles (nops) added in case of data depencencies: 
jmpr and jalr. 

Number of ALU cycles 1 
 

Position of the 
instruction 1 

1 2 3 
2 1 bubbles 2 bubbles 3 bubbles 
3 0 bubbles  1 bubbles 2 bubbles 
4 0 bubbles 0 bubbles 1 bubbles 

 
1 The instruction which the other (currently in stage 1) depends on. 
 
 
Condition flags (Z, N, C) are always available when an instruction updating them is in stage 3. Therefore 
an instruction updating flags followed by an instruction using them causes one bubble to be added.



Number of bubbles added when switching context 
 
General 
An interrupt or an exception causes a hardware assisted context switch to take place. The 
pipeline is executed to a safe state feeding nop –instructions in and advancing 
instructions already on pipeline until they are all in ‘safe state’. 
 
An instruction is in safe state if 
- It won’t change PSR 
- It won’t change flags in condition register CR0 
- It cannot cause any exceptions 
- It won’t change the value of PC 
 
Note that in case of an exception, program counter is immediately updated with the 
address of an exception handler routine whereas in case of an interrupt, PC may still 
change if there is jump in stage 1 or swm instruction on pipeline. 
 
Table 8, Instructions and their safe states. 

 modifies/causes a check safe in stage 
add 
addi 

Modifies flags in condition register CR0. Overflow checked. 3 

addiu 
addu 

Modifies flags in condition register CR0 3 

bc 
begt 
belt 
beq 
bgt 
bnc 
blt 
bne 

Updates program counter, New address is checked. 3 

chrs Modifies PSR flags. Mode check (chrs not valid in user mode.) 2 
cmp 
cmpi 

Modifies flags in one of the condition registers. If flags targeted to CR0  => 3 
else                                  => 1 

cop Mode check (cop not valid in 16 bit mode) 2 
di 
ei 

Modifies PSR flags Mode check (di and ei not valid in user 
mode.) 

2 

exbfi Mode check (exbfi not valid in 16 bit mode) 2 
jal 
jalr 
jmp 
jmpr 

Updates program counter, New address is checked. 3 

ld Calculates a memory address which has to be checked. 4 
lli 
lui 

Mode check (lli and lui not valid in 16 bit mode) 2 

rcon Updates the whole condition register file. 3 
reti Updates program counter and processor status (PSR). Address 

not checked in the same context. 
3* 

retu Updates program counter and processor status (PSR). Address 
is checked. Mode check (retu not valid in user mode.) 

3 

scall Updates program counter and processor status (PSR). Address 3 



is checked. 
sll 3 
slli 

Modifies flags in condition register CR0. 
3 

st Calculates a memory address which has to be checked. 4 
sub Modifies flags in condition register CR0. Overflow checked. 3 

subu Modifies flags in condition register CR0.  3 
swm Modifies PSR flags. Changes PC increment. 3 
trap Updates program counter and processor status (PSR). Address 

is checked after switching to exception handler. Incorrect 
address will result in eternal loop!! 

2. (trap causes an exception, so 
it’s never ‘safe’ for interrupts) 

all 
others 

 1 

 
* Under normal circumstances reti –instruction modifies PC and PSR in stage 3 but in case of a hardware 
assisted context switch its only effect is to ensure correct state of the hardware stack. If an interrupt request 
gets through while reti is on pipeline (nested interrupts only), hardware stack preserves its state. If an 
exception occurs while reti is on pipeline (illegal user address) return address is popped but not saved 
anywhere.



Special Notes 
 
Here is a list of things to remember... things that did not belong under any topic. 
 
- If an instruction further on pipeline is going to write SPSR (writable as register  30 of 

register set 2) and there’s a scall -instruction in stage 1, the one(s) further on the 
pipeline are invalidated! This prevents status corruption and ensures safe return 
(using retu -instruction).  

-  
 


	Instruction execution cycle times
	
	
	
	Table 1, Stage definitions
	Table 2, Instruction cycle timing




	Program Counter update timing
	
	
	
	Table 3, Instruction address timing



	START + 22
	START + 22
	START + 22
	START + 22
	START + 30
	
	ALWAYS ADD TWO 16 BIT NOPS AFTER SWM –INSTRUCTION INDEPENDENT OF MODE!
	Table 5, Pipeline stall resolving


	Number of wait bubbles caused by dependencies



