
 1

Integer arithmetic
mnemonic description operands notes
add dreg <= reg1, reg2
addi
addiu

dreg <= reg, imm

addu

add 32 bit integers

dreg <= reg1, reg2

mulhi dreg <= intermediate Upper 32 bits of a 64 bit result
muli dreg <= reg, imm
muls
mulu
mulus

multiply 32 bit integers

muls_16
mulu_16
mulus_16

multiply 16 bit integers

sub
subu

subtract 32 bit integers

dreg <= reg1, reg2

Byte and bitfield manipulation
mnemonic description operands notes
exb extract byte from word dreg <= reg, imm
exbf dreg <= reg1, reg2

exbfi
extract bitfield from word

32 bit version only
Not allowed to be executed
conditionally

exh extract halfword from word

dreg <= reg, imm

lli dreg <= imm
lui

Load lower/upper halfword
with immediate value dreg <= reg, imm

32 bit version only
Not allowed to be executed
conditionally

sext dreg <= reg1, reg2
sexti

Sign extend an integer
dreg <= reg, imm

conb
conh

Concatenate
bytes/halfwords

dreg <= reg1, reg2

Boolean bitwise operations
mnemonic description operands notes
and dreg <= reg1, reg2
andi

bitwise and
dreg <= reg, imm

not bitwise not dreg <= reg
or dreg <= reg1, reg2
ori

bitwise or
dreg <= reg, imm

xor bitwise xor dreg <= reg1, reg2

Conditinal jumps (branches)
mnemonic description operands notes
bc
begt
belt
beq
bgt
blt
bnc
bne

Branch if condition is true. pc <= pc, imm Pre-evaluated flags from one of
the eight condition registers are
used to evaluate condition.

Other jumps
mnemonic description operands notes
jal pc <= pc, imm

dreg <= pc + increment
Not allowed to be executed
conditionally.

jalr

jump and save link address

pc <= reg
dreg <= pc + increment

jmp pc <= pc, imm Not allowed to be executed
conditionally

jmpr

jump

pc <= reg

 2

Integer comparison
mnemonic description operands notes
cmp creg <= reg1, reg2
cmpi

Compare and evaluate
condition flags. creg <= reg, imm

Not allowed to be executed
conditionally.

Shifts
mnemonic description operands notes
sll dreg <= reg1, reg2
slli

logical shift left
dreg <= reg, imm

sra dreg <= reg1, reg2
srai

arithmetic shift right
dreg <= reg, imm

srl dreg <= reg1, reg2
srli

logical shift right
dreg <= reg, imm

Only left shift produces flags

Memory load and store & data moving
mnemonic description operands notes
ld load a word from memory dreg <= mem[reg +

imm]
st store a word to memory mem[reg1 + imm] <=

reg2
mov move a word from register

to register.
dreg <= reg

Address does not have to be
aligned to word boundary. Usage
of bits 0 to 1 depend on
implementation.

Coprocessor instructions
mnemonic description operands notes
cop coprosessor instruction cop <= imm 32 bit version only

Not allowed to be executed
conditionally

movfc mov data from coprocessor dreg <= cop, cpreg
movtc mov data to coprocessor cop <= reg, cpreg

Mode changing instructions
mnemonic description operands notes
chrs Change register set to

operate with
psr <= imm

di disable interrupts psr <= IE <= ‘0’
ei enable interrupts psr <= IE <= ‘1’
swm switch between

decoding modes:
psr <= imm

reti return from an interrupt
service routine

pc <= hw_stack_addr
psr <= hw_stack_psr

Not allowed to be executed
conditionally. chrs, di, ei and retu
available in super user mode only.

Version 1.0 supports to decoding
modes: 16 bit ISA and 32 bit ISA.

retu return to user/SPSR
defined mode.

pc <= lreg
psr <= spsr

scall system entry psr <= sys_psr
pc <= sys_entry_addr

These instructions should be used
to interface operating system or
similar.

Miscellaneous
mnemonic description operands notes
rcon Restore all condition

registers from general
purpose register.

creg <= reg

scon Move the contents of all
condition registers to a
general purpose register

dreg <= creg

Not allowed to be executed
conditionally

trap software exception psr <= Should be used to catch software
exceptions.

nop no operation, idle

